Hemagglutinin (HA) displayed on a ferritin nano-cage has been shown to be effective in generating a potent immune response against a broad range of influenza infections. Here, we showed that conjugation of flagellin together with HA to the exterior surface of the ferritin cage greatly enhanced not only the humoral immune response in mice but also antigen-specific T cell responses that include Th1 cytokine secretion. The effect of flagellin remained essentially unchanged when the molar ratio of flagellin to HA was reduced from 1:1 to 1:3. Injection of the ferritin-HA-flagellin cage provided protection against lethal virus challenge in mice. We used a small immunoglobulin fragment V12.3 as a convenient method for attaching HA and flagellin to the ferritin cage. This attachment method can be used for rapid screening of a variety of protein cages and nano-assemblies to identify the most suitable carrier and adjuvant proteins for the target antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2019.01.012DOI Listing

Publication Analysis

Top Keywords

immune response
8
ferritin cage
8
attachment flagellin
4
flagellin enhances
4
enhances immunostimulatory
4
immunostimulatory activity
4
activity hemagglutinin-ferritin
4
hemagglutinin-ferritin nano-cage
4
nano-cage hemagglutinin
4
hemagglutinin displayed
4

Similar Publications

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Background: Antiretroviral therapy (ART) restores cellular immunity, significantly reducing AIDS-related mortality and morbidity thus improving the quality of life among People living with HIV (PLHIV). Studies done in several countries show a decline in AIDS defining cancers (ADCs) with the introduction of ART however the increased longevity has led to the increase of Non-AIDS defining cancers (NADCs). The study was aimed at studying the changing spectrum and trends of cancer among Human Immunodeficiency Virus (HIV) patients in southwestern Uganda.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!