Determining the three-dimensional structure of biomacromolecules at high resolution in their native cellular environment is a major challenge for structural biology. Toward this end, electron cryotomography (ECT) allows large bio-macromolecular assemblies to be imaged directly in their hydrated physiological milieu to ~4 nm resolution. Combining ECT with other techniques like fluorescent imaging, immunogold labeling, and genetic manipulation has allowed the in situ investigation of complex biological processes at macromolecular resolution. Furthermore, the advent of cryogenic focused ion beam (FIB) milling has extended the domain of ECT to include regions even deep within thick eukaryotic cells. Anticipating two audiences (scientists who just want to understand the potential and general workflow involved and scientists who are learning how to do the work themselves), here we present both a broad overview of this kind of work and a step-by-step example protocol for ECT and subtomogram averaging using the Legionella pneumophila Dot/Icm type IV secretion system (T4SS) as a case study. While the general workflow is presented in step-by-step detail, we refer to online tutorials, user's manuals, and other training materials for the essential background understanding needed to perform each step.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9048-1_16DOI Listing

Publication Analysis

Top Keywords

electron cryotomography
8
general workflow
8
situ imaging
4
imaging structure
4
structure determination
4
determination bacterial
4
bacterial toxin
4
toxin delivery
4
delivery systems
4
systems electron
4

Similar Publications

Molecular tags for electron cryo-tomography.

Emerg Top Life Sci

December 2024

Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.

Electron cryotomography enables the direct visualisation of biological specimens without stains or fixation, revealing complex molecular landscapes at high resolution. However, identifying specific proteins within these crowded environments is challenging. Molecular tagging offers a promising solution by attaching visually distinctive markers to proteins of interest, differentiating them from the background.

View Article and Find Full Text PDF

TomoScore: A Neural Network Approach for Quality Assessment of Cellular cryo-ET.

bioRxiv

November 2024

Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.

Electron cryo-tomography (cryo-ET) is a powerful imaging tool that allows three-dimensional visualization of subcellular architecture. During morphological analysis, reliable tomogram segmentation can only be achieved through high-quality data. However, unlike single-particle analysis or subtomogram averaging, the field lacks a useful quantitative measurement of cellular tomogram quality.

View Article and Find Full Text PDF

The flagellar motors of Campylobacter jejuni (C. jejuni) and related Campylobacterota (previously epsilonproteobacteria) feature 100-nm-wide periplasmic "basal disks" that have been implicated in scaffolding a wider ring of additional motor proteins to increase torque, but the size of these disks is excessive for a role solely in scaffolding motor proteins. Here, we show that the basal disk is a flange that braces the flagellar motor during disentanglement of its flagellar filament from interactions with the cell body and other filaments.

View Article and Find Full Text PDF

The NLRP3 inflammasome is a multi-protein molecular machine that mediates inflammatory responses in innate immunity. Its dysregulation has been linked to a large number of human diseases. Using cryogenic fluorescence-guided focused-ion-beam (cryo-FIB) milling and electron cryo-tomography (cryo-ET), we obtained 3-D images of the NLRP3 inflammasome at various stages of its activation at macromolecular resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!