A personal retrospective on the mechanisms of antigen processing.

Immunogenetics

Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.

Published: March 2019

My intention here is to describe the history of the molecular aspects of the antigen processing field from a personal perspective, beginning with the early identification of the species that we now know as MHC class I and MHC class II molecules, to the recognition that their stable surface expression and detection by T cells depends on peptide association, and to the unraveling of the biochemical and cell biological mechanisms that regulate peptide binding. One goal is to highlight the role that serendipity or, more colloquially, pure blind luck can play in advancing the research enterprise when it is combined with an appropriately receptive mind. This is not intended to be an overarching review, and because of my own work I focus primarily on studies of the human MHC. This means that I neglect the work of many other individuals who made advances in other species, particularly those who produced the many knockout mouse strains used to demonstrate the importance of the antigen processing machinery for initiating immune responses. I apologize in advance to colleagues around the globe whose contributions I deal with inadequately for these reasons, and to those whose foundational work is now firmly established in text books and therefore not cited. So many individuals have worked to advance the field that giving all of them the credit they deserve is almost impossible. I have attempted, while focusing on work from my own laboratory, to point out contemporaneous or sometimes earlier advances made by others. Much of the success of my own laboratory came because we simultaneously worked on both the MHC class I and class II systems and used the findings in one area to inform the other, but mainly it depended on the extraordinary group of students and fellows who have worked on these projects over the years. To those who worked in other areas who are not mentioned here, rest assured that I appreciate your efforts just as much.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461365PMC
http://dx.doi.org/10.1007/s00251-018-01098-2DOI Listing

Publication Analysis

Top Keywords

antigen processing
12
mhc class
12
personal retrospective
4
retrospective mechanisms
4
mechanisms antigen
4
processing intention
4
intention describe
4
describe history
4
history molecular
4
molecular aspects
4

Similar Publications

VZV IE4 downregulates cellular surface MHC-I via sequestering it to the Golgi complex.

Cell Mol Life Sci

December 2024

Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.

Varicella-zoster virus (VZV) infection downregulates surface major histocompatibility complex class I (MHC-I) expression and retains MHC-I in the Golgi complex of infected cells. However, the underlying mechanism is not fully understood. The VZV IE4 protein is a multifunctional protein that is essential for VZV infection.

View Article and Find Full Text PDF

Functional modification of drugs can significantly improve their efficacy and safety, thus enabling targeted therapy. Functional modifications based on polysaccharides can alter their molecular structure, and effectively enhance their functional properties and biological activities. Herein, we designed and synthesized cationic Laminarin (CLam) modified with polyethyleneimine (PEI) and explored its application as a vaccine adjuvant.

View Article and Find Full Text PDF

Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers.

View Article and Find Full Text PDF

Background: Small cell lung cancer (SCLC) is a highly fatal malignancy, the complex tumor microenvironment (TME) is a critical factor affecting SCLC progression. Cancer-associated fibroblasts (CAFs) are crucial components of TME, yet their role in SCLC and the underlying mechanisms during their interaction with SCLC cells remain to be determined.

Methods: Microenvironmental cell components were estimated using transcriptome data from SCLC tissue available in public databases, analyzed with bioinformatic algorithms.

View Article and Find Full Text PDF

Integrating advanced Microfluidic lateral flow systems with a finger-prick blood collection cartridge to create an all-in-one platform for point-of-care diagnostics.

Biosens Bioelectron

December 2024

Laboratory of Advanced Biotechnologies for Health Assessments (Lab-HA), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3 Canada; Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON, M3J 1P3, Canada. Electronic address:

Rapid, point-of-care tests are critical for early diagnosis of disease and detection of biological threats. Lateral flow immunoassays (LFIAs) are well-suited for point-of-care testing due to their ease of use and straightforward readout. However, limitations in sensitivity, quantification, and integration into sample-to-result systems indicate the need for further advancements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!