Rational fabrication of anode electrodes for sodium-ion batteries remains a challenge due to the problem of sluggish Na+ diffusion kinetics, large volume expansion etc. Significant efforts, such as fabricating carbon composites and novel nanostructures, have been devoted to the development of anode materials. Herein, an ultra-small few-layer MoS2 nanostructure confined on a hierarchical porous carbon fiber composite was synthesized through the nanocasting route using a novel hierarchical porous carbon fiber as the template. As an anode material, the composite displays outstanding electrochemical performance for sodium-ion batteries. For instance, it delivers high reversible capacities (491 mA h g-1 after 50 cycles at 0.1 A g-1), high rate performance (387 mA h g-1 at 2 A g-1) and long-term cycling stability (234 mA h g-1 at 1 A g-1 after 3000 cycles). Note that it shows one of the best long-term cycling properties reported to date for MoS2-based anode materials for sodium-ion batteries. This regulation strategy may offer new insights into the fabrication of high-performance anode materials for sodium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt04744hDOI Listing

Publication Analysis

Top Keywords

sodium-ion batteries
16
porous carbon
12
carbon fiber
12
long-term cycling
12
anode materials
12
ultra-small few-layer
8
fiber composite
8
hierarchical porous
8
g-1 g-1
8
materials sodium-ion
8

Similar Publications

The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.

View Article and Find Full Text PDF

The NASICON-type NaV(PO) (NVP) is recognized as a potential cathode material for Na-ion batteries (SIBs). Nevertheless, its inherent small electronic conductivity induces limited cycling stability and rate performance. Carbon coating, particularly N-doped carbon, has been identified as an effective strategy to address these challenges.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

A Phase-Transition-Free Sodium Vanadium Phosphate Cathode via Medium-Entropy Engineering for Superior Sodium Ion Batteries.

Adv Mater

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.

NaV(PO), based on multi-electron reactions between V/V/V, is a promising cathode material for SIBs. However, its practical application is hampered by the inferior conductivity, large barrier of V/V, and stepwise phase transition. Herein, these issues are addressed by constructing a medium-entropy material (NaVTiAlCrMnNi(PO), ME-NVP) with strong ME─O bond and highly occupied Na2 sites.

View Article and Find Full Text PDF

The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!