[G protein-coupled receptor 17 is involved in CoCl-induced hypoxic injury in RGC-5 cells].

Zhejiang Da Xue Xue Bao Yi Xue Ban

Department of Pharmacy, Shanghai Children's Medical Center Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.

Published: May 2018

Objective: To investigate the effect of G protein-coupled receptor 17 (GPR17) on hypoxia injury in retinal ganglion cells .

Methods: CoCl (400 μmol/L) was used to induce hypoxic injury in RGC-5 cells. The expression of GPR17 and the effect of GPR17 ligands were investigated, and the role of GPR17 in hypoxia injury was further studied by transfection of RGC-5 cells with GPR17 small interfering RNA (siRNA). The cell viability was determined by MTT and the cell apoptosis rate was detected by flow cytometry analysis. The expression of GPR17 mRNA was determined with RT-PCR.

Results: mRNA expressions of GPR17 in RGC-5 cells with and without CoCl treatment were 0.36±0.05 and 0.26±0.08(<0.01). Compared with hypoxia without any treatment, pretreatment with GPR17 agonists (LTD, UDP, UDP-G) significantly reduced cell viability (the survival rates of cells decreased by 29.6%, 31.8% and 33.9%, all <0.01), while the effect of GPR17 antagonist (cangrelor) was the opposite (the survival rates of cells increased by 33.2%, <0.01). Transfection with GPR17 SiRNA inhibited hypoxia-induced up-expression of GPR17 mRNA (<0.01)and reduced cell apoptosis[rates of cell apoptosis were(39.73±2.06)%,(42.50±3.64)% and (24.98±2.16)% for blank control, NC siRNA and GPR17 siRNA groups, <0.01].

Conclusions: GPR17 may mediate hypoxia injury in RGC-5 cells, while the knockdown of GPR17 can reduce the hypoxia injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10393670PMC
http://dx.doi.org/10.3785/j.issn.1008-9292.2018.10.07DOI Listing

Publication Analysis

Top Keywords

rgc-5 cells
12
protein-coupled receptor
8
hypoxic injury
8
injury rgc-5
8
gpr17 hypoxia
8
hypoxia injury
8
expression gpr17
8
gpr17
7
receptor involved
4
involved cocl-induced
4

Similar Publications

Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.

View Article and Find Full Text PDF

Transgenic silkworm expressing bioactive human ciliary neurotrophic factor for biomedical application.

Insect Sci

September 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Biological Science Research Center, Southwest University, Chongqing, China.

Article Synopsis
  • - The study focuses on the large-scale production of bioactive human Ciliary Neurotrophic Factor (CNTF), known for its role in neuronal protection and stem cell differentiation, using a genetically modified silkworm silk gland bioreactor.
  • - Researchers successfully expressed CNTF in the silkworm's middle silk gland, achieving a yield of 3.2 mg of CNTF per gram of silk cocoon, which significantly improved neural cell proliferation and migration compared to natural silk.
  • - The CNTF-functionalized silk material also promoted neurite outgrowth in mouse retinal ganglion cells, suggesting its potential applications in tissue engineering and neuroregeneration.
View Article and Find Full Text PDF
Article Synopsis
  • Fubai chrysanthemum is a traditional Chinese medicine known for its ability to improve visual fatigue and can also be used as a food.
  • Recent studies revealed 11 active substances from Fubai chrysanthemum that were found in rat plasma, indicating its potential medicinal properties.
  • The research showed that Fubai chrysanthemum helps protect eye cells from oxidative damage and increases cell vitality, suggesting its effectiveness in reducing visual fatigue by regulating cell apoptosis and oxidative stress responses.
View Article and Find Full Text PDF

Small extracellular vesicles derived from microRNA-22-3p-overexpressing mesenchymal stem cells protect retinal ganglion cells by regulating MAPK pathway.

Commun Biol

July 2024

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Nankai District, Tianjin, 300384, China.

Glaucoma is the leading cause of irreversible blindness and is characterized by progressive retinal ganglion cell (RGC) loss and retinal nerve fiber layer thinning. Currently, no existing treatment is effective for the preservation of RGCs. MicroRNA-22-3p (miR22) and small extracellular vesicles derived from mesenchymal stem cells (MSC-sEVs) have neuroprotective effects.

View Article and Find Full Text PDF

Small-molecule positive allosteric modulator 1 (SPAM1), which targets pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1-R), has been found to have a neuroprotective effect, and the underlying mechanism was explored in this study. First, using a D-galactose (D-gal)-induced aging mouse model, we confirmed that SPAM1 improves the structure of the hippocampal dentate gyrus and restores the number of neurons. Compared with D-gal model mice, SPAM1-treated mice showed up-regulated expression of Sirtuin 6 (SIRT6) and Lamin B1 and down-regulated expression of YinYang 1 (YY1) and p16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!