Highly efficient nonfullerene polymer solar cells (PSCs) are developed based on two new phthalimide-based polymers phthalimide-difluorobenzothiadiazole (PhI-ffBT) and fluorinated phthalimide-ffBT (ffPhI-ffBT). Compared to all high-performance polymers reported, which are exclusively based on benzo[1,2-:4,5-']dithiophene (BDT), both PhI-ffBT and ffPhI-ffBT are BDT-free and feature a D-A-D-A type backbone. Incorporating a second acceptor unit difluorobenzothiadiazole leads to polymers with low-lying highest occupied molecular orbital levels (≈-5.6 eV) and a complementary absorption with the narrow bandgap nonfullerene acceptor IT-4F. Moreover, these BDT-free polymers show substantially higher hole mobilities than BDT-based polymers, which are beneficial to charge transport and extraction in solar cells. The PSCs containing difluorinated phthalimide-based polymer ffPhI-ffBT achieve a substantial PCE of 12.74% and a large of 0.94 V, and the PSCs containing phthalimide-based polymer PhI-ffBT show a further increased PCE of 13.31% with a higher of 19.41 mA cm and a larger fill factor of 0.76. The 13.31% PCE is the highest value except the widely studied BDT-based polymers and is also the highest among all benzothiadiazole-based polymers. The results demonstrate that phthalimides are excellent building blocks for enabling donor polymers with the state-of-the-art performance in nonfullerene PSCs and the BDT is not necessary for constructing such donor polymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6343056PMC
http://dx.doi.org/10.1002/advs.201801743DOI Listing

Publication Analysis

Top Keywords

solar cells
12
polymers
9
efficient nonfullerene
8
cells pscs
8
bdt-based polymers
8
phthalimide-based polymer
8
donor polymers
8
phthalimide-based
4
phthalimide-based high
4
high mobility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!