Environmental Chemical Contaminants in Food: Review of a Global Problem.

J Toxicol

Laboratory of Advanced Lipid Analysis, Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan.

Published: January 2019

Contamination by chemicals from the environment is a major global food safety issue, posing a serious threat to human health. These chemicals belong to many groups, including metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), perfluorinated compounds (PFCs), pharmaceutical and personal care products (PPCPs), radioactive elements, electronic waste, plastics, and nanoparticles. Some of these occur naturally in the environment, whilst others are produced from anthropogenic sources. They may contaminate our food-crops, livestock, and seafood-and drinking water and exert adverse effects on our health. It is important to perform assessments of the associated potential risks. Monitoring contamination levels, enactment of control measures including remediation, and consideration of sociopolitical implications are vital to provide safer food globally.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6332928PMC
http://dx.doi.org/10.1155/2019/2345283DOI Listing

Publication Analysis

Top Keywords

environmental chemical
4
chemical contaminants
4
contaminants food
4
food review
4
review global
4
global problem
4
problem contamination
4
contamination chemicals
4
chemicals environment
4
environment major
4

Similar Publications

Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in .

J Agric Food Chem

January 2025

China-Kenya Joint Laboratory for Ecological Pest Control of Citrus, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against , a vector of citrus greening disease.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

Nanoporous high-entropy alloys and metallic glasses: advanced electrocatalytic materials for electrochemical water splitting.

Chem Commun (Camb)

January 2025

Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

Electrochemical water splitting is a promising approach to convert renewable energy into hydrogen energy and is beneficial for alleviating environmental pollution and energy crises, and is considered a clean method to achieve dual-carbon goals. Electrocatalysts can effectively reduce the reaction energy barrier and improve reaction efficiency. However, designing electrocatalysts with high activity and stability still faces significant challenges, which are closely related to the structure and electronic configuration of catalysts.

View Article and Find Full Text PDF

Organoboron complexes have garnered significant attention due to their remarkable optical properties and diverse applications. However, synthesizing stable fused five-, six- and seven-membered organoboron complexes possess significant challenges. In this study, we successfully developed novel mono-nuclear (6-8 & 10) and di-nuclear (9) organoboron complexes supported by triaminoguanidine-salicylidene based -symmetric Schiff base ligands one-step condensation reaction with excess phenylboronic acid.

View Article and Find Full Text PDF

The human skin maintains a comfortable and healthy somatosensory state by sensing different aspects of the thermal environment, including temperature value, heat source, energy level, and duration. However, state-of-the-art thermosensors only measure basic temperature values, not the full range of the thermosensation function of human skin. Here, we propose a heat source recognition () sensor of poly(butyl acrylate)-lithium bis(n-fluoroalkylsulfonyl)imide (PBA-Li:FSI;  = 1, 3, 5), which enables response to temperature, pressure, and proximity stimulus signals based on the relaxation behavior of the ionic gel and distinguished between different types of heat sources (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!