Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The scaffold is a place for regeneration of new bone and bone tissue growths in tissue engineering applications. hADMSC is a multipotent cell which can differentiate into osteogenic, chondrogenic and adipogenic. Y-TZP has been shown to have several advantages over other ceramics because of its hard nature, namely fracture toughness and high flexural strength.
Aim: This study aimed to analyze the biocompatibility of Y-TZP as a scaffold seeded with hADMSCs by in vitro analysis.
Material And Methods: This research involved several processes, namely Y-TZPS manufacture process, XRD examination, differentiation and characterization of hADMSC, SEM observation, and then TT.
Results: The results of the XRD examination showed that Y-TZPSs had sharp peaks. It suggests that they had high crystal purity. The marked expression of the characterization of hADMSC is the positive expression of Cluster of differentiation (CD), namely CD 90, CD 73 and CD 105 above NMT and negative expressions of CD 14, CD 19, CD 34, CD 45 and also HLA-DR below NLT. The analysis of observations on the Y-TZPSs with SEM, subsequently, indicated the porosity of Y-TZPSs, as a result, the adhesion of HADMSCs occurred and grew in the porosity in the Y-TZPSs.
Conclusions: Y-TZPSs with low porosity and toxicity can be able to proliferate and differentiate if seeded with hADMSC. Y-TZPSs are expected to be used as implantable biomaterials using hADMSCs with high biocompatibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311115 | PMC |
http://dx.doi.org/10.5455/aim.2018.26.249-253 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!