Neuronal activity in the brain generates synchronous oscillations of the Local Field Potential (LFP). The traditional analyses of the LFPs are based on decomposing the signal into simpler components, such as sinusoidal harmonics. However, a common drawback of such methods is that the decomposition primitives are usually presumed from the onset, which may bias our understanding of the signal's structure. Here, we introduce an alternative approach that allows an impartial, high resolution, hands-off decomposition of the brain waves into a small number of discrete, frequency-modulated oscillatory processes, which we call oscillons. In particular, we demonstrate that mouse hippocampal LFP contain a single oscillon that occupies the θ-frequency band and a couple of γ-oscillons that correspond, respectively, to slow and fast γ-waves. Since the oscillons were identified empirically, they may represent the actual, physical structure of synchronous oscillations in neuronal ensembles, whereas Fourier-defined "brain waves" are nothing but poorly resolved oscillons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349927 | PMC |
http://dx.doi.org/10.1038/s41598-018-37196-0 | DOI Listing |
J Physiol Sci
January 2025
Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico; Carrera de Psicología, Facultad de Estudios Superiores Zaragoza-UNAM, México City, México.
The external globus pallidus (GP) firing rate synchronizes the basal ganglia-thalamus-cortex network controlling GABAergic output to different nuclei. In this context, two findings are significant: the activity and GABAergic transmission of the GP modulated by GABA B receptors and the presence of the GP-thalamic reticular nucleus (RTn) pathway, the functionality of which is unknown. The functional participation of GABA B receptors through this network in cortical dynamics is feasible because the RTn controls transmission between the thalamus and cortex.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 2025
Laboratory of Immunopathology - Instituto René Rachou, Fundação Oswaldo Cruz - Minas, Belo Horizonte 30190-002, Brazil.
The synchronization of parasites as they replicate within red blood cells of their vertebrate host remains largely unexplored. Understanding this synchronization could reveal how parasites optimize their lifecycle to maximize transmission, evade the immune response and maximize energy acquisition. Rhythmic replication fulfils some criteria of an endogenous oscillator with time of day cues potentially provided by temperature, oxygen levels, hormones and/or nutrient availability.
View Article and Find Full Text PDFMol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFFront Netw Physiol
January 2025
Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.
All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.
View Article and Find Full Text PDFAcetylcholine modulates the network physiology of the hippocampus, a crucial brain structure that supports cognition and memory formation in mammals . In this and adjacent regions, synchronized neuronal activity within theta-band oscillations (4-10Hz) is correlated with attentive processing that leads to successful memory encoding . Acetylcholine facilitates the hippocampus entering a theta oscillatory regime and modulates the temporal organization of activity within theta oscillations .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!