Patterned cell wall deposition is crucial for cell shapes and functions. In Arabidopsis xylem vessels, ROP11 GTPase locally inhibits cell wall deposition through microtubule disassembly, inducing pits in cell walls. Here, we show that an additional ROP signaling pathway promotes cell wall growth at pit boundaries. Two proteins, Boundary of ROP domain1 (BDR1) and Wallin (WAL), localize to pit boundaries and regulate cell wall growth. WAL interacts with F-actin and promotes actin assembly at pit boundaries while BDR1 is a ROP effector. BDR1 interacts with WAL, suggesting that WAL could be recruited to the plasma membrane by a ROP-dependent mechanism. These results demonstrate that BDR1 and WAL mediate a ROP-actin pathway that shapes pit boundaries. The study reveals a distinct machinery in which two closely associated ROP pathways oppositely regulate cell wall deposition patterns for the establishment of tiny but highly specialized cell wall domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349933PMC
http://dx.doi.org/10.1038/s41467-019-08396-7DOI Listing

Publication Analysis

Top Keywords

cell wall
28
pit boundaries
16
wall deposition
12
cell
9
signaling pathway
8
pathway shapes
8
arabidopsis xylem
8
xylem vessels
8
wall growth
8
regulate cell
8

Similar Publications

Wall shear stress modulates metabolic pathways in endothelial cells.

Metabolomics

January 2025

Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.

Introduction: Hemodynamic forces play a crucial role in modulating endothelial cell (EC) behavior, significantly influencing blood vessel responses. While traditional in vitro studies often explore ECs under static conditions, ECs are exposed to various hemodynamic forces in vivo. This study investigates how wall shear stress (WSS) influences EC metabolism, focusing on the interplay between WSS and key metabolic pathways.

View Article and Find Full Text PDF

A case of mucormycosis caused by Rhizopus microsporus in a renal transplant patient.

CEN Case Rep

January 2025

Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2, Toranomon, Minato, Tokyo, Japan.

A 54-year-old man who had been on the kidney donor register for 32 years received a kidney from a 9-year-old boy who had died of fulminant myocarditis. The post-operative course was poor, and hemodialysis was still needed after surgery. A kidney biopsy one hour after surgery showed a neutrophil-predominant inflammatory cell infiltrate localized to the peritubular capillaries (PTC) and acute tubular necrosis of the proximal tubule.

View Article and Find Full Text PDF

Objectives: To evaluate the at-risk organs that require protection during percutaneous cryoablation (PCA) of renal tumours and the correlation with patient and target lesion characteristics, type of protective measure used and postoperative outcomes.

Materials And Methods: Single-centre retrospective review of patients with renal tumours who underwent PCA between 2008 and 2020. Final analysis included 374 tumours.

View Article and Find Full Text PDF

Synthesis and evaluation of the antifungal and antibiofilm potential of aminochalcones.

Arch Microbiol

January 2025

Department of Chemistryand Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University Júlio de Mesquita Filho, São José do Rio Preto, SP, Brazil.

Candida is a commensal fungus of clinical interest that commonly lives in oral cavity and intestine but can become an opportunist microrganism and cause severe infections. A serie of 10 aminochalcones were designed and synthetized to obtain compounds anti-Candida with potent and broad-spectrum activity. The most active compound J34 demonstrated excellent in vitro activity against Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata and Candida krusei with minimum inhibitory concentration between 1.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!