Neurons communicate through Ca-dependent neurotransmitter release at presynaptic active zones (AZs). Neurotransmitter release properties play a key role in defining information flow in circuits and are tuned during multiple forms of plasticity. Despite their central role in determining neurotransmitter release properties, little is known about how Ca channel levels are modulated to calibrate synaptic function. We used CRISPR to tag the Ca2 Ca channel Cacophony (Cac) and, in males in which all Cac channels are tagged, investigated the regulation of endogenous Ca channels during homeostatic plasticity. We found that heterogeneously distributed Cac is highly predictive of neurotransmitter release probability at individual AZs and differentially regulated during opposing forms of presynaptic homeostatic plasticity. Specifically, AZ Cac levels are increased during chronic and acute presynaptic homeostatic potentiation (PHP), and live imaging during acute expression of PHP reveals proportional Ca channel accumulation across heterogeneous AZs. In contrast, endogenous Cac levels do not change during presynaptic homeostatic depression (PHD), implying that the reported reduction in Ca influx during PHD is achieved through functional adaptions to pre-existing Ca channels. Thus, distinct mechanisms bidirectionally modulate presynaptic Ca levels to maintain stable synaptic strength in response to diverse challenges, with Ca channel abundance providing a rapidly tunable substrate for potentiating neurotransmitter release over both acute and chronic timescales. Presynaptic Ca dynamics play an important role in establishing neurotransmitter release properties. Presynaptic Ca influx is modulated during multiple forms of homeostatic plasticity at neuromuscular junctions to stabilize synaptic communication. However, it remains unclear how this dynamic regulation is achieved. We used CRISPR gene editing to endogenously tag the sole Ca channel responsible for synchronized neurotransmitter release, and found that channel abundance is regulated during homeostatic potentiation, but not homeostatic depression. Through live imaging experiments during the adaptation to acute homeostatic challenge, we visualize the accumulation of endogenous Ca channels at individual active zones within 10 min. We propose that differential regulation of Ca channels confers broad capacity for tuning neurotransmitter release properties to maintain neural communication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435823 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3068-18.2019 | DOI Listing |
J Recept Signal Transduct Res
December 2024
Father George Albuquerque Pai Cell and Molecular Biology Laboratory, Department of Biotechnology, School of Life Sciences, St Aloysius (Deemed to be University), Mangaluru, Karnataka, India.
Regulating insulin production by pancreatic beta cells is crucial for maintaining metabolic balance. Previous studies observed elevated neurotransmitter levels, like norepinephrine (NE), in metabolic syndrome mice with impaired insulin secretion. Given the therapeutic potential of β-adrenergic receptors (β-ARs) for diabetes and obesity, and the lack of structural data on murine β-ARs, we aimed to construct and validate 3D models to investigate their roles in insulin secretion regulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
Tumor heterogeneity, immune-suppressive microenvironment and the precise killing of tumor cells by drugs are important factors affecting tumor treatment. In this study, we developed environment-responsive drug delivery system (FM@IQ/PST&ZIF-8/DOX) based on ZIF-8 for tumor photothermal/immunotherapy/chemotherapy synergistic therapy. The prepared FM@IQ/PST&ZIF-8/DOX nanoplatfrom not only has highly drug loading capacity for chemotherapeutic drug-doxorubicin, but also erythrocyte membrance modified on their surface can endow their immunity-escaping property and prolong their blood circulation time.
View Article and Find Full Text PDFSynapse
January 2025
Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada.
Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS/Université Paris-Sud, 91198 Gif-sur-Yvette, Cedex, France.
Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!