In this study, conversion of municipal solid waste incineration bottom ash (IBA) into highly efficient sorbents for Cu(II) removal was reported. The formation of tobermorite induced by humic acid (HA) and IBA under hydrothermal condition was explored and its potential application for efficient removal of Cu(II) ions was further investigated. After hydrothermal treatment, the morphology and microstructure of IBA remarkably changed from sheet-like to particle-like, thereby resulting in substantial increases of sorption capacity. The synthesized tobermorite exhibited a strongly enhanced sorption performance toward Cu(II), which was 270.3 mg g and higher than other reported sorbents. The adsorption behaviors were subsequently examined by isotherm and kinetic studies. Langmuir model was found to describe the adsorption process well, suggesting that the adsorption was chemisorption in nature. Therefore, the hydrothermally synthesized tobermorite may be used as sorbents to remove Cu(II). Conversion of IBA into valuable minerals recovers waste into potential resources and alleviates the needs for ash disposal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2018.11.037DOI Listing

Publication Analysis

Top Keywords

formation tobermorite
8
hydrothermal treatment
8
municipal solid
8
solid waste
8
waste incineration
8
incineration bottom
8
bottom ash
8
application efficient
8
efficient removal
8
removal cuii
8

Similar Publications

Construction of a Molecular Dynamics Model of N-A-S-H Geopolymer Based on XRD Analysis.

Materials (Basel)

December 2024

College of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.

A geopolymer is a low-carbon cementitious material, and its condensation process is akin to the formation of inorganic polymers. The crystal phase of synthesized geopolymers was identified using XRD; the scattering peaks of amorphous phases were analyzed, and the zeolite minerals akin to different n(Si)/n(Al) geopolymers were determined. Based on this, a model structure of N-A-S-H geopolymers was established.

View Article and Find Full Text PDF

We have examined whether the copper reduction slag (CRS) generated after recovering valuable metals from copper slag (CS) by reduction process can be used as supplementary cementitious materials (SCMs). According to the test results, the Cu secondary slag with low Fe, Cu, and heavy metal contents had a suitable oxide composition for using as a SCM. CRS showed better grinding efficiency than that of ground blast furnace slag (GGBS).

View Article and Find Full Text PDF

Porous ceramics were synthesized using porcelain tile polishing residue (PTPR) and slaked lime (Ca(OH)) as a reinforcing agent through a hydrothermal autoclaving method. The process parameters, including the quantity of slaked lime added, the hydrothermal autoclaving temperature, and the reaction duration, were optimized meticulously. The composition, structure, thermal and physical properties of the samples were thoroughly analyzed via Brunauer-Emmett-Teller (BET) measurements, powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Binders formulated with activated alkali materials to replace Portland cement, which has high polluting potential due to CO emissions in its manufacture, have increasingly been developed. The objective of this study is to evaluate the main properties of activated alkali materials (AAM) produced by blast furnace slag, fly ash, and metakaolin. Initially, binders were characterized by their chemical, mineralogical and granulometric composition.

View Article and Find Full Text PDF

Molecular Dynamics Simulation of Silane Inserted CSH Nanostructure.

Materials (Basel)

December 2023

School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China.

Herein, the toughening mechanism and effects of 3-(aminopropyl)triethoxysilane (3-APTES) intercalation in calcium-silicate-hydrate (CSH) structures were investigated through molecular dynamics simulations. CSH established a model using 11 Å-tobermorite to simulate the tensile properties, toughness, adsorption energy, average orientation displacement and radial distribution function of 3-APTES intercalation at different Ca/Si ratios under conditions of a CVFF force field, an NVT system, and 298 K temperature. Simulation results demonstrate that 3-APTES alters the fracture process of CSH and effectively enhances its tensile properties and toughness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!