Download full-text PDF

Source
http://dx.doi.org/10.1016/j.healun.2018.11.011DOI Listing

Publication Analysis

Top Keywords

implantable wireless
4
wireless pulmonary
4
pulmonary pressure
4
pressure monitor
4
monitor transition
4
transition therapy
4
therapy pulmonary
4
pulmonary arterial
4
arterial hypertension
4
pulmonary
2

Similar Publications

Wireless power-up and readout from a label-free biosensor.

Biomed Microdevices

January 2025

Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.

Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.

View Article and Find Full Text PDF

The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.

View Article and Find Full Text PDF

This work presents the design, fabrication, and rigorous validation of a flexible, wireless, capacitive pressure sensor for the full-range continuous monitoring of ventricular pressure. The proposed system consists of an implantable set and an external readout device; both modules were designed to form an RCL resonant circuit for passive, wireless pressure sensing and signal retrieving. Using surface micromachining and flexible electronics techniques, a two-variable capacitor array and a dual-layer planar coil were integrated into a flexible ergonomic substrate, avoiding hybrid-like connections in the implantable set.

View Article and Find Full Text PDF

: Deep brain stimulation (DBS) is an effective treatment for movement disorders, but its long-term efficacy may be undermined by hardware complications such as lead fractures. These complications increase healthcare costs and necessitate surgical revisions. The frequency, timing, and clinical factors associated with lead fractures remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!