Hesperidin, as a flavonone, is recognized as promising anti-inflammatory, antioxidant, and anticancer agent. Its poor bioavailability is crucial bottleneck for therapeutic efficacy. To enhance the stability and bioactive potentials, hesperidin -PLGA-Poloxamer 407 was successfully prepared to minimize or overcome problems associated with hesperidin absorption. The characteristics of nanohesperidin were testing by in vitro dissolution study, XRD, FTIR, PSA and SEM. Antioxidant effects of nanohesperidin were studied. The structure-activity relationship analysis with antioxidant pharmacophore has been performed by using density functional theory method and quantum chemical calculations. The structural properties were investigated using Becke three-parameter hybrid exchange and the Lee-Yang-Parr correction functional methods. Nanohesperidin was found to decrease the HO activity-induced DNA instability. Blood compatibility on human erythrocytes was confirmed by haemolytic and in vitro toxicity assessments. The in vitro anticancer activity of nanohesperidin towards MCF-7 cells using various parameters was carried out. The nanohesperidin was found to exert cell growth arrest, activated DNA fragmentation and induced apoptotic cell death through caspase-3 and p53-dependent pathways. These findings showed that nanohesperidin play an important role in its anticancer effects, suggesting might be used for clinical trials and can represent driving formulation for novel chemotherapeutic agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2018.1559175 | DOI Listing |
Mol Biol Rep
June 2021
Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.
Background: Incidence of diabetes has increased significantly worldwide over recent decades. Our objective was to prepare and characterize a novel nano-carrier of hesperidin to achieve a sustained release of hesperidin and to explore the potency of the novel formula as an antidiabetic agent compared to metformin in type 2 diabetic rats.
Methods: Hesperidin was loaded on MgAl-layered double hydroxide (LDH).
Neurotox Res
February 2020
Department of Pharmacology, Creative Educational Society's College of Pharmacy, Kurnool, Andhra Pradesh, India.
Cerebral ischemia-reperfusion (C I/R) accelerates neuronal injury through the overproduction of reactive oxygen species due to mitochondrial dysfunction. Hesperidin has cerebroprotective effects due to its antioxidant and anti-apoptotic nature against oxidative damage caused by C I/R. The blood-brain barrier also limits the hesperidin passage into the cerebral region due to its poor bioavailability.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2019
a Biotechnology Division, Applied Science Department , University of Technology, Baghdad , Iraq.
Hesperidin, as a flavonone, is recognized as promising anti-inflammatory, antioxidant, and anticancer agent. Its poor bioavailability is crucial bottleneck for therapeutic efficacy. To enhance the stability and bioactive potentials, hesperidin -PLGA-Poloxamer 407 was successfully prepared to minimize or overcome problems associated with hesperidin absorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!