Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soils amended for long-term with high levels of compost demonstrated greater abundance of bacterial members of the phylum Bacteroidetes whereas a decreasing trend in the relative abundance of phylum Acidobacteria was noted with increasing levels of compost. Metabolic profiles predicted by PICRUSt demonstrated differences in functional responses of the bacterial community according to the treatments. Soils amended with lower compost levels were characterized by abundance of genes encoding enzymes contributing to membrane transport and cell growth whereas genes encoding enzymes related to protein folding and transcription were enriched in soils amended with high levels of compost. Thus, the results of the current study provide extensive evidence of the influence of different compost levels on bacterial diversity and community structure in paddy soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1811.11018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!