The growing number of cyclotrons of different sizes installed in the territory has given a strong impulse to the production of conventional and emerging radionuclides for medical applications. In particular, the great advantage of using medical cyclotrons is the possibility to produce on-site, when needed (on-demand), with medical radionuclides of interest encouraging the personalized medicine approach. Radiometals satisfy the ideal characteristics that radionuclides should have for routine employment in nuclear medicine, especially since they have a robust chemistry suitable to synthetize stable in vivo radiopharmaceuticals with high radiochemical yields. In this letter several interdisciplinary aspects involved in the radiometals cyclotron production cycle are summarized focusing the attention on cyclotron production facilities, target material, and chemical processing available for medical applications. As an example, the current status and recent development in the production of the theranostic radionuclide scandium-47 have been reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385051 | PMC |
http://dx.doi.org/10.3390/molecules24030444 | DOI Listing |
EJNMMI Radiopharm Chem
January 2025
School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
Background: (S)-4-(3-F-Fluoropropyl)-ʟ-glutamic acid ([F]FSPG) is a positron emission tomography radiotracer used to image system x, an antiporter that is upregulated in several cancers. Not only does imaging system x with [F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [F]FSPG has been hampered by a lack of robust, cGMP-compliant methods.
View Article and Find Full Text PDFSci Total Environ
January 2025
China National Environmental Monitoring Centre, Beijing 100012, China.
The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
Light-driven reduction of CO into chemicals using a photoelectrochemical (PEC) approach is considered as a promising way to meet the carbon neutral target. The very top surface of the photoelectrode and semiconductor/electrolyte interface plays a pivotal role in defining the performance for PEC CO reduction. However, such impact remains poorly understood.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
The electrochemical CO reduction reaction (CORR) holds enormous potential as a carbon-neutral route to the sustainable production of fuels and platform chemicals. The durability for long-term operation is currently inadequate for commercialization, however, and the underlying deactivation process remains elusive. A fundamental understanding of the degradation mechanism of electrocatalysts, which can dictate the overall device performance, is needed.
View Article and Find Full Text PDFSmall Methods
January 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States.
Copper-tantalate, CuTaO (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C) production through photoelectrochemical (PEC) CO reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!