Wear Behavior of Graphene-Reinforced Alumina⁻Silicon Carbide Whisker Nanocomposite.

Nanomaterials (Basel)

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.

Published: January 2019

In the present work, the tribological properties of graphene-reinforced Al₂O₃-SiCw ceramic nanocomposites fabricated by spark plasma sintering were studied against alumina ball. Compared with pure ceramic, the wear resistance of these nanocomposites was approximately two times higher regardless of the applied load. It was confirmed by Raman spectroscopy that the main factor for the improvement of the wear resistance of the Al₂O₃-SiCw/Graphene materials was related to the formation of protecting tribolayer on worn surfaces, which leads to enough lubrication to reduce both the friction coefficient, and wear rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409536PMC
http://dx.doi.org/10.3390/nano9020151DOI Listing

Publication Analysis

Top Keywords

wear resistance
8
wear
4
wear behavior
4
behavior graphene-reinforced
4
graphene-reinforced alumina⁻silicon
4
alumina⁻silicon carbide
4
carbide whisker
4
whisker nanocomposite
4
nanocomposite work
4
work tribological
4

Similar Publications

Machinability and surface integrity analysis of Ti-17 alloy using WEDC for advanced aero-engine application.

Heliyon

January 2025

University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering, Rua Luís Reis Santos, 3030-788, Coimbra, Portugal.

Recent advancements in aerospace industry demand intricate aero-engine parts, leading to the increased use of titanium alloys, particularly Ti-17, due to its high strength, thermal stability, and corrosion resistance. However, its low thermal conductivity and tool wear tendency pose significant machining challenges, impacting surface integrity, fatigue life, and overall component performance. This study investigates the Wire Electrical Discharge Cutting (WEDC) process, revealing that the mechanism behind improved surface integrity lies in the controlled thermal input, which minimizes phase transformations and reduces residual stresses.

View Article and Find Full Text PDF

Advanced Nodular Thin Dense Chromium Coating: Superior Corrosion Resistance.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.

Chromium-based functional coatings (CFCs) are widely recognized for their outstanding wear and corrosion resistance across diverse industrial sectors. However, despite advancements in deposition techniques and microstructural enhancements, many contemporary CFCs remain vulnerable to degradation in highly corrosive environments. For the first time, this research delivers a thorough characterization of the corrosion resistance of advanced CFCs, focusing on the performance of a 5 μm thin dense chromium (TDC) coating.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

This study examines the intricate area of refractory-based high entropy alloys (RHEAs), focusing on a series of complex compositions involving nine diverse refractory elements: Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. We investigate the phase stability, bonding interactions, electronic structures, lattice distortions, mechanical, and thermal properties of six RHEAs with varying elemental ratios using VASP and OLCAO DFT calculations. Through comprehensive analysis, we investigate the impact of elemental variations on the electronic structure, interacting bond dynamics, lattice distortion, thermodynamic, mechanical, and thermal properties within these RHEAs, providing an insight into how these specific elemental variations in composition give rise to changes in the calculated properties in ways that would guide future experimental and computational efforts.

View Article and Find Full Text PDF

Measurement of volumetric wear of printed polymer resin and milled polymer infused ceramic network definitive restorative materials.

J Prosthet Dent

January 2025

Associate Professor and Director of Student Research, Division of Restorative and Prosthetic Dentistry, College of Dentistry, The Ohio State University, Columbus, OH. Electronic address:

Statement Of Problem: Currently there is no regulatory requirement or international standard for the wear resistance of dental materials and therefore no need to test prior to market launch.

Purpose: The purpose of this in vitro study was to evaluate and compare the total volumetric wear characteristics of milled polymer infiltrated ceramic network (MPICN) and printed polymer resin (PPR) as substrates opposing five antagonists, human enamel (EN), lithium disilicate (LD), zirconia (ZR), MPICN, and PPR, and to evaluate and compare the volumetric wear of these same materials as antagonists.

Material And Methods: Ten of each antagonist for a total of 50 EN, LD (IPS e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!