Various physical and chemical factors in soil can inhibit the detection and quantification of soilborne plant pathogens using quantitative polymerase chain reaction (qPCR) assays. A multiplexed TaqMan qPCR assay, including a competitive internal positive control (CIPC), was developed to identify and (where necessary) compensate for inhibition in the quantification of resting spores of Plasmodiophora brassicae from soil. The CIPC amplicon was developed by modifying a sequence coding for green fluorescent protein so that it could be amplified with P. brassicae-specific primers. Addition of CIPC at 5 fg/μl to the singleplex qPCR assay designed to quantify P. brassicae genomic DNA did not reduce the sensitivity, specificity, or reproducibility of the assay. Each of the soil samples, either artificially inoculated or naturally infested with P. brassicae, exhibited no amplification of the CIPC. When the samples were diluted and reassessed, the quantification cycle of the CIPC relative to the control (water only) was delayed in each sample. The magnitude of the delay was used to adjust the estimate of resting spore concentration. The corrected concentration estimates were significantly higher than the unadjusted estimate, which indicated the presence of DNA inhibitors in samples even after dilution. The only exception was a mineral soil sample inoculated with a low concentration (10 spores/g) of resting spores. The assay was optimized for use on a range of soil types. A sample of 0.25 g for mineral soil and 0.10 g for high-organic-matter soil was optimum for recovery of DNA of P. brassicae. The assay represents an improvement over existing assays for estimating resting spore concentration in infested fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-06-14-0608-RE | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
Sci Rep
January 2025
General Surgery Department, Jiangsu University Affiliated People's Hospital, Zhenjiang, 212000, China.
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.
View Article and Find Full Text PDFSince the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the need for an effective vaccine has appeared crucial for stimulating immune system responses to produce humoral/cellular immunity and activate immunological memory. It has been demonstrated that SARS-CoV-2 variants escape neutralizing immunity elicited by previous infection and/or vaccination, leading to new infection waves and cases of reinfection. The study aims to gain into cases of reinfections, particularly infections and/or vaccination-induced protection.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Propidium monoazide (PMA) is a dye that distinguishes between live and dead cells in molecular assays like the Polymerase Chain Reaction (PCR). It works by cross-linking to the DNA of cells that have compromised membranes or extracellular DNA upon photoactivation, making the DNA inaccessible for amplification. Currently, PMA is used to detect viable pathogens and alleviate systemic bias in the microbiome analysis of samples using 16S rRNA gene sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!