A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Piezoelectric Microchip for Cell Lysis through Cell-Microparticle Collision within a Microdroplet Driven by Surface Acoustic Wave Oscillation. | LitMetric

Cell lysis is an important and crucial step for the detection of intracellular secrets. Usually, cell lysis is based on strong ultrasonic waves or toxic chemical regents, which require a large amount of cell suspension. To obtain high efficiency cell lysis for a small amount of sample, a mechanical cell lysis method based on a surface acoustic wave (SAW) microchip is proposed. The microchip simply consists of a piece of LiNbO crystal substrate, interdigitated transducers (IDTs) with 80 pairs of parallel electrodes and 3M Magic Tapes. The modulated input electrical signal is coupled into the substrate through IDTs, which produces an acoustic stream in the droplet on the surface of a substrate. When a biofluid droplet containing cells and microparticles is dropped on the surface of the microchip, the cells and microparticles are accelerated and collide with each other. The fluorescence staining results illustrate that the cell membrane is efficiently destroyed and that proteins as well as nucleic acids inside the cell are released. The experimental results show that this method has a high efficiency and low sample consumption. The potential application is the pretreatment of a small amount of tested sample in a hospital or biolab.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201804593DOI Listing

Publication Analysis

Top Keywords

cell lysis
20
cell
8
surface acoustic
8
acoustic wave
8
high efficiency
8
small amount
8
cells microparticles
8
lysis
5
piezoelectric microchip
4
microchip cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!