Precious metals such as palladium (Pd) and platinum (Pt) are marvelous materials in the fields of electronic and catalysis, but they are tapering day by day. Zr(IV)-based metal-organic frameworks (MOFs) are competent for their recovery, notably in harsh environments, while the general powder form limits their practical application. Porous MOF-based membranes with ultraefficient metal ion permeation, strong stability, and high selectivity are, therefore, strikingly preferred. Herein, a set of polymeric fibrous membranes incorporated with the UiO-66 series are fabricated; their adsorption/desorption capabilities toward Pd(II) and Pt(IV) are evaluated from strongly acidic solutions; and the MOF-polymer compatibilities are investigated. Polyurethane (PU)/UiO-66-NH showed strong acid resistance and high chemical stability, which are attributable to strong π-π interactions between PU and MOF nanoparticles with a high configuration of energy. The as-fabricated MOF membranes show extremely good adsorption/desorption performances without ruptures/coalitions of nanofibers or leak of MOF nanoparticles, and successfully display the efficacy in a gravity-driven or even continuous-flow system with good recycle performance and selectivity. The as-fabricated MOF membranes set an example of potential MOF-polymer compatibility for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.201805242 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.
Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.
View Article and Find Full Text PDFBackground And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.
View Article and Find Full Text PDFRSC Adv
January 2025
Materials and Natural Product Laboratory, Department of Chemistry, Chandigarh University Gharuan-140413 Mohali Punjab India
Mild steel provides strength to various building and industrial materials but it is badly affected by corrosion. In the present study, we investigate the efficacy of , a plant-based green corrosion inhibitor to minimize mild steel corrosion in a 1 M HSO solution. Weight loss, surface coverage, inhibition efficiency, and corrosion rate measurements were evaluated for various inhibitor concentrations and time intervals.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
A lasso peptide biosynthetic gene cluster (BGC) was identified through genome mining in the species CGMCC 4.1857, which was isolated from acidic rhizosphere soil. The BGC was reconstructed in , leading to the heterologous production of a lasso peptide named streptacidin.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
APIGENEX s.r.o., Poděbradská 173/5, Prague 19000, Czech Republic.
Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.
Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!