Background: Classically, the study of splicing impact of variation located near the splice site is performed by both in silico and mRNA analysis. However, RNA sample was rarely available.
Objective: To characterize a panel of putative haemophilia A splicing variations.
Materials And Methods: Twenty-six F8 variations identified from a cohort of 2075 haemophilia A families were studied using both bioinformatic tools and in vitro minigene assays in HeLa and Huh7 cells.
Results: An aberrant splicing was demonstrated for 21/26 tested sequence variations. A good correlation between in silico and in vitro analysis was obtained for variations affecting donor splice site (12/14) and for the synonymous variations located inside an exon (6/6). Conversely, no concordant results were observed for the six variations affecting acceptor splice sites. The variations resulted more frequently in exon skipping (n = 13) than in activation of nearby cryptic splice sites (n = 5), in use of a de novo splice site (n = 2) or in insertion of large intronic sequences (n = 1). This study allowed to reclassify 5 synonymous substitutions c.1167A>G (p.Gln389Gln), c.1569G>T (p.Leu523Leu), c.1752G>A (p.Gln584Gln), c.5586G>A (p.Leu1862Leu) and c.6066C>T (p.Gly2022Gly) as splicing variations. The pathological significance of five variations remained unclear (c.222G>A [p.Thr74Thr], c.237C>T [p.Asn79Asn], c.240C>T [p.Ile80Ile], c.2113+5_2113+8del and c.2113+5G>A).
Discussion: The minigene assay herein gave additional evidences for the clinical significance of 21/26 F8 putative splice site mutations. Such investigation should be performed for each F8 putative splice site variation for which no mRNA sample is available, notably to greatly improve the genetic counselling given to female carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/hae.13687 | DOI Listing |
Int J Mol Sci
January 2025
Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
In the field of RNA therapy, innovative approaches based on adenosine deaminases acting on RNA (ADAR)-mediated site-directed RNA editing (SDRE) have been established, providing an exciting opportunity for RNA therapeutics. ADAR1 and ADAR2 enzymes are accountable for the predominant form of RNA editing in humans, which involves the hydrolytic deamination of adenosine (A) to inosine (I). This inosine is subsequently interpreted as guanosine (G) by the translational and splicing machinery because of their structural similarity.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia.
The advent of next-generation sequencing (NGS) has revolutionized the analysis of genetic data, enabling rapid identification of pathogenic variants in patients with inborn errors of immunity (IEI). Sometimes, the use of NGS-based technologies is associated with challenges in the evaluation of the clinical significance of novel genetic variants. In silico prediction tools, such as SpliceAI neural network, are often used as a first-tier approach for the primary examination of genetic variants of uncertain clinical significance.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada.
The hepatocyte growth factor receptor (MET) is a receptor tyrosine kinase (RTK) that mediates the activity of a variety of downstream pathways upon its activation. These pathways regulate various physiological processes within the cell, including growth, survival, proliferation, and motility. Under normal physiological conditions, this allows MET to regulate various development and regenerative processes; however, mutations resulting in aberrant MET activity and the consequent dysregulation of downstream signaling can contribute to cellular pathophysiology.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Pediatric Dermatology, Heim Pal National Pediatric Institute, 1089 Budapest, Hungary.
Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder caused by pathogenic variants in the gene. Although genotype-phenotype correlation studies are increasing, robust clinically relevant correlations have remained limited. We conducted a retrospective analysis of data obtained from a cohort of 204 Hungarian individuals, with a mean age of 16 years (age range: 1-33 years).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!