There are several methods for studying metal-contaminated freshwater sediments, but more information is needed on which methods to include in ecological risk assessment. In this study, we compliment the traditional Sediment Quality Triad (SQT) approach - including information on chemistry, toxicity and ecological status - with studies on metal bioavailability and metal body residues in local organisms. We studied four mining-affected boreal lakes in Finland by conducting chemical analyses of sediment and water, toxicity tests (L. variegatus, V. fischeri, C. riparius, L. stagnalis), and analysis of benthic organism community structure. In addition, we studied the relationships between metal loading, toxicity, metal bioavailability, and metal body residues in the field-collected biota. Chemistry and benthic organism community structures show adverse effects in those lakes, where the metal concentrations are the highest. However, toxicity was connected to low sediment pH during the experiment, rather than to high metal concentrations. Toxicity was observed in 4 out of 6 toxicity tests including growth test with L. variegatus, bulk sediment test with V. fischeri, and the L. stagnalis toxicity test. The C. riparius test did not show toxicity. Metal body residues in biota were not high enough to induce adverse effects (0.1-4.1 mg Cu/kg fw, 0.01-0.3 mg Ni/kg fw, 2.9-26.7 mg Zn/kg fw and 0.01-0.7 mg As/kg fw). Chemical analyses, metal bioavailability assessment and benthic community structures survey revealed adverse effects in the sediments, where metal concentrations are highest (Lake SJ and Lake KS). Standard toxicity tests were not suitable for studying acid, sulfide-rich sediments and, therefore, benthic structure study and chemical analyses are believed to give more reliable results of the ecological status of these sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.01.209DOI Listing

Publication Analysis

Top Keywords

metal bioavailability
16
metal
12
metal body
12
body residues
12
chemical analyses
12
toxicity tests
12
adverse effects
12
metal concentrations
12
toxicity
9
sediments metal
8

Similar Publications

Mercury and selenium in biological pump under upwelling-downwelling influence in Cabo Frio shelf, South Atlantic Ocean, Brazil.

Sci Total Environ

January 2025

Universidade Federal do Pará, Programa de Pós-Graduação em Geologia e Geoquímica, Rua Augusto Corrêa, 1, Campus Guamá, PA 66075-110 Belém, Pará, Brazil.

The knowledge of metals concentration in upwelling areas are a concern due the higher productivity of these areas In Cabo Frio Upwelling-Downwelling System (CFUS) is high primary productivity area and has been identified as an Hg hotspot to biota in SE Brazil that has been susceptible to Hg inputs, due to growing industrialization in the region. To investigate the concentration of Hg and Se metals, as well as the trophic transfer of these metals, the present study investigated Hg and Se concentrations in 64 samples collected in net mesh of >20, >64, >150 and >300 μm, in 2012, in the region's water masses. Higher mean Hg concentrations were found in zooplankton, 0.

View Article and Find Full Text PDF

Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.

Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.

View Article and Find Full Text PDF

Curcumin (Cur) is a great candidate for antioxidant applications; however, due to its low solubility and poor bioavailability, it remains only hardly employed as a therapeutic agent. Moreover, curcumin is very unstable and tends to degrade quickly. Metal-organic frameworks (MOFs) have gained great attention in the field of drug loading due to their diversity and tunability, so they are seen as great candidates for hosting curcumin.

View Article and Find Full Text PDF

A biochar selection method for remediating heavy metal contaminated mine tailings.

Int J Environ Sci Technol (Tehran)

April 2024

Pacific Ecological Systems Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Corvallis, OR 97333-4902, USA.

Approximately 390,000 abandoned mines across the US pose considerable, pervasive risks to human and environmental health; world-wide the problem is even greater. Lime, organic materials, and other amendments have been used to decrease metal bioavailability (e.g.

View Article and Find Full Text PDF

Introduction: Solidification/Stabilization techniques are commonly used for the containment and isolation of Pb-contaminated soil, but they cannot reduce the amount of contaminants. Freeze - thaw after stabilization may affect Pb's environmental behavior and increase the uncertainty of environmental risk.

Methods: experiments can simulate the bioavailability of heavy metals to the human body, accurately assessing their environmental health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!