Background: Ambient air pollution has been associated with acute cardiovascular events; however, the underlying mechanisms remain incompletely understood. We aimed to examine the impacts of ambient air pollutants on cardiac ventricular repolarization in a highly polluted urban region.
Methods: Seventy-three healthy non-smoking young adults (66% female, mean age of 23.3 ± 5.4 years) were followed with four repeated 24-h electrocardiogram recordings in 2014-2016 in Beijing, China. Continuous concentrations of ambient particulates in size fractions of 5-560 nm diameter, black carbon (BC), nitrogen dioxide (NO), carbon monoxide (CO), sulfur dioxide (SO), and ozone (O) were measured at a fixed-location air pollution monitoring station. Generalized linear mixed models, with adjustment for individual risk factors, time-varying factors and meteorological parameters, were used to evaluate the effects of air pollution on 5-min segments of heart rate-corrected QT interval (QTc), an index of cardiac ventricular repolarization.
Results: During the study period, the mean levels of number concentrations of particulates in size range of 5-560 nm (PNC) were 20,711 particles/cm. Significant increases in QTc of 0.56% (95% CI: 0.27, 0.84) to 1.76% (95% CI: 0.73, 2.79) were associated with interquartile range increases in PNC at prior 1-5 moving average days. Significant increases in QTc were also associated with increases in exposures to traffic-related air pollutants (BC, NO and CO), a combustion pollutant SO, and the secondary pollutant O. The associations were stronger in participants who were male, overweight, with abdominal obesity, and with higher levels of high-sensitivity C-reactive protein.
Conclusions: Our findings suggest that exposures to higher levels of ambient particulates in small size fractions and traffic pollutants were associated with cardiac repolarization abnormalities in healthy adults, and the cardio-metabolic risks may modify the adverse cardiac effects attributable to air pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2019.01.023 | DOI Listing |
Environ Monit Assess
January 2025
Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.
The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Brandeis University, Waltham, MA, USA.
Purpose Of Review: Indoor air pollution is likely to be elevated in multi-family housing and to contribute to health disparities, but limited studies to date have systematically considered the empirical evidence for exposure differentials between multi-family and single-family housing. Our goal is to separately examine the drivers of residential indoor air pollution, including outdoor air pollution, ventilation and filtration, indoor sources, and occupant activity patterns, using secondhand smoke as a case study to examine the behavioral dimensions of indoor environmental interventions.
Recent Findings: Within studies published from 2018 to 2023, multi-family homes have higher average outdoor air pollution than single-family homes given their more frequent presence in urban and near-roadway settings.
Curr Opin Psychiatry
December 2024
Department of Neuroscience, Carleton University.
Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.
Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.
Am J Cancer Res
December 2024
Department of Epidemiology, University of Florida, College of Public Health and Health Professions and College of Medicine Gainesville, FL, USA.
We investigated if selected polymorphisms in DNA repair genes modify the association between exposure to particulate matter ≤ 10 micron in diameter (PM) and breast cancer (BCa) risk. We included 150,929 postmenopausal women (5,969 with BCa) from UK Biobank, a population-based prospective cohort. Cancer diagnoses were ascertained through the linkage to the UK National Health Service Central Registers.
View Article and Find Full Text PDFNPJ Clim Atmos Sci
January 2025
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!