Batch experiments, in conjunction with chromatographic and spectroscopic measurements, were performed to comparatively investigate the degradation of various chlorophenolic (CP) compounds (e.g., 2-CP, 4-CP, 2,3-DCP, 2,4-DCP, 2,4,6-TCP, 2,3,4,6-TeCP) by a modified Fenton process using pyrite as the catalyst. The batch results show that the CP removal by pyrite-Fenton process was highly dependent on chemical conditions (e.g., pH, CP and pyrite concentration), CP type, number and location of chlorine atoms on the aromatic ring. With the exception of 2,3,4,6-TeCP and 2,3-DCP, the CP removal decreased with increasing the number of chlorine constituents. While the main mechanism responsible for monochlorophenol removal (e.g., 2-CP and 4-CP) was the hydroxyl radical attack on aromatic rings, the CP removal for multichlorophenolic compounds (e.g., 2,3,4,6-TeCP) was driven by both: (1) hydroxyl radical attack on aromatic rings by both solution and surface-bound hydroxyl radicals and (2) adsorption onto pyrite surface sites. The adsorption affinity increased with increasing the number of Cl atoms on the aromatic ring due to enhanced hydrophobic effect. The TOC removal was not 100% complete for all CPs investigated due to formation of chemically less degradable chlorinated intermediate organic compounds as well as low molecular weight organic acids such as formic and acetic acid. Spectroscopic measurements with SEM-EDS, zeta potential and XPS provided evidence for the partial oxidation of pyrite surface Fe(II) and disulfide groups under acidic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.01.017 | DOI Listing |
J Environ Manage
December 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
There is a gap in understanding the different contributions of biodegradation and free radical oxidation using calcium peroxide (CaO) for the remediation of mixed contaminants of benzene and chlorobenzene in groundwater. In this study, the remedial efficiency and mechanisms of benzene and chlorobenzene co-contaminants using CaO were explored by an integrated approach of field study and laboratory validation. It was found that in the field demonstration program, the radius of influence for each injection point using Geoprobe direct-push was larger than the designed value of 0.
View Article and Find Full Text PDFEnviron Res
December 2024
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore. Electronic address:
The heterogeneous catalysis of the composite membrane not only exerts the synergistic effect of different materials but also enable the recyclable use of catalysts, making it an ideal and sustainable strategy for removing pollutants in water. In this study, a novel black phosphorus/graphene/titanium dioxide (BP/GR/TiO) membrane was successfully prepared through the sol-gel method. The composite membrane not only overcame the instability of black phosphorus and the rapid recombination of e/h pairs in titanium dioxide but also synergized with GR to produce a new reactive oxygen species (ROS), singlet oxygen (O), with a longer lifetime and migration distance.
View Article and Find Full Text PDFIron-based materials have demonstrated significant efficacy in catalyzing hydrogen peroxide (HO) for the removal of antibiotics from aquatic environments. Green rust (GR), a hybrid valence state iron-based catalyst, was synthesized. By exploiting the catalytic properties of glucose oxidase (GOx) to generate HO from glucose (Glu), a GR-GOx/Glu system for the removal of recalcitrant organic compound 4-chlorophenol (4-CP) was constructed.
View Article and Find Full Text PDFCNS Drugs
January 2025
Epilepsy Center, Department of Neurosurgery, Faculty of Medicine, University of Freiburg, Breisacher Strasse 64, 79106, Freiburg, Germany.
Background And Objective: Cenobamate is a novel anti-seizure medication (ASM) with unusually high responder rates even in patients with refractory epilepsy. Due to its enzyme-inducing properties, cenobamate could negatively affect bone metabolism, similar to other ASMs; however, effects of long-term cenobamate treatment on bone health have not yet been investigated. The aim of this longitudinal observational study was to assess the effects of 1 year of continuous, adjunctive cenobamate treatment on bone health in patients with drug-resistant, focal epilepsy.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2025
College of Science, Nanjing Agricultural University, Nanjing 210095, China; School of Geography, University of Leeds, Leeds, LS2 9JT, UK. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!