N-3 polyunsaturated fatty acids: An innovative strategy against obesity and related metabolic disorders, intestinal alteration and gut microbiota dysbiosis.

Biochimie

Université de Bourgogne Franche-Comté, UFR Sciences de la Vie, de la Terre et de l'Environnement, Lipides Nutrition Cancer UMR UMR1231, 6 Boulevard Gabriel, 21000, Dijon, France; INSERM, Lipides Nutrition Cancer UMR1231, 21000, Dijon, France; LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, 21000, Dijon, France. Electronic address:

Published: April 2019

Obesity is now widely recognized to be associated with low-grade systemic inflammation. It has been shown that high-fat feeding modulates gut microbiota which strongly increased intestinal permeability leading to lipopolysaccharide absorption causing metabolic endotoxemia that triggers inflammation and metabolic disorders. N-3 polyunsaturated fatty acids (PUFAs) have been shown associated with anti-obesity properties, but results still remain heterogeneous and very few studies underlined the metabolic pathways involved. Thus, the use of Fat-1 transgenic mice allows to better understanding whether endogenous n-3 PUFAs enrichment contributes to obesity and associated metabolic disorders prevention. It specially evidence that such effects occur through modulations of gut microbiota and intestinal permeability. Then, by remodeling gut microbiota, endogenous n-3 PUFAs improve HF/HS-diet induced features of the metabolic syndrome which in turn affects host metabolism. Thus, increasing anti-obesogenic microbial species in the gut microbiota population (i.e Akkermansia) by appropriate n-3 PUFAs may represent a promising strategy to control or prevent metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2019.01.017DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
metabolic disorders
12
n-3 pufas
12
n-3 polyunsaturated
8
polyunsaturated fatty
8
fatty acids
8
intestinal permeability
8
endogenous n-3
8
metabolic
7
n-3
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!