Background: Quantitative molecular data from urine are rare in epidemiology and genetics. NMR spectroscopy could provide these data in high throughput, and it has already been applied in epidemiological settings to analyse urine samples. However, quantitative protocols for large-scale applications are not available.

Methods: We describe in detail how to prepare urine samples and perform NMR experiments to obtain quantitative metabolic information. Semi-automated quantitative line shape fitting analyses were set up for 43 metabolites and applied to data from various analytical test samples and from 1004 individuals from a population-based epidemiological cohort. Novel analyses on how urine metabolites associate with quantitative serum NMR metabolomics data (61 metabolic measures; n = 995) were performed. In addition, confirmatory genome-wide analyses of urine metabolites were conducted (n = 578). The fully automated quantitative regression-based spectral analysis is demonstrated for creatinine and glucose (n = 4548).

Results: Intra-assay metabolite variations were mostly <5%, indicating high robustness and accuracy of urine NMR spectroscopy methodology per se. Intra-individual metabolite variations were large, ranging from 6% to 194%. However, population-based inter-individual metabolite variations were even larger (from 14% to 1655%), providing a sound base for epidemiological applications. Metabolic associations between urine and serum were found to be clearly weaker than those within serum and within urine, indicating that urinary metabolomics data provide independent metabolic information. Two previous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-wide significance.

Conclusion: Quantitative urine metabolomics data suggest broad novelty for systems epidemiology. A roadmap for an open access methodology is provided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6659374PMC
http://dx.doi.org/10.1093/ije/dyy287DOI Listing

Publication Analysis

Top Keywords

nmr metabolomics
8
epidemiology genetics
8
urine samples
8
analyses urine
8
urine metabolites
8
quantitative
7
urine
6
proof concept
4
concept quantitative
4
quantitative urine
4

Similar Publications

Diterpene chemical space of Aeollanthus buchnerianus Briq. aerial part.

Nat Prod Bioprospect

January 2025

Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK.

The Plectranthinae clade, which includes genera such as Plectranthus, Ocimum, and Aeollanthus, is well known for its diverse array of diterpenoids. While numerous studies have deepened the understanding of diterpene diversity across the clade, Aeollanthus species remain underexplored, with only two studies focusing on their diterpene profiles. The NMR-based chemical profiling of the EtOAc leaf extract of the rocky and succulent species Aeollanthus buchnerianus Briq.

View Article and Find Full Text PDF

Metabolite identification from 1D H NMR spectra is a major challenge in NMR-based metabolomics. This study introduces NMRformer, a Transformer-based deep learning framework for accurate peak assignment and metabolite identification in 1D H NMR spectroscopy. Unlike traditional approaches, NMRformer interprets spectra as sequences of spectral peaks and integrates a self-attention mechanism and peak height ratios directly into the Transformer encoder layer.

View Article and Find Full Text PDF

Brevetoxins are a type of neurotoxin produced in red tide blooms. Northern quahogs () are extensively used in commercial aquaculture farming, and early-stage metabolomics studies can provide early warnings of brevetoxins for farmers. In this study, NMR-based metabolomics was performed to investigate the response of clam gills and digestive glands under a series of sublethal doses of brevetoxins.

View Article and Find Full Text PDF

Early life stress shifts critical periods and causes precocious visual cortex development.

PLoS One

December 2024

Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.

The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex.

View Article and Find Full Text PDF

Background: Juvenile idiopathic arthritis (JIA) is challenging to classify and effectively monitor due to the lack of disease- and subtype-specific biomarkers. A robust molecular signature that tracks with specific JIA features over time is urgently required, and targeted plasma metabolomics may reveal such a signature. The primary aim of this study was to characterise the differences in the plasma metabolome between JIA patients and non-JIA controls and identify specific markers of JIA subtype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!