The need of long-term treatment for chronic HBV, emergence of drug-resistant viruses and inefficiency of currently approved therapies to eliminate covalently closed circular DNA (cccDNA), mandates identification of potent and selective inhibitors of HBV replication with novel mechanisms of action. Entecavir, a carbocyclic guanosine nucleoside analog, is the most potent inhibitor of HBV replication on the market. Moreover, the naturally occurring carbocyclic nucleosides aristeromycin are known for their wide range of antiviral activities. In this research, we have utilized BINAP directed rhodium catalyzed reductive carbocyclization of 1,6-enynes (8a-b) through asymmetric hydrogenation which is an approach, not yet explored in carbocyclic sugar synthesis. Interestingly, we obtained exclusive anti-(9a) and Z-anti (9b) carbocyclic sugars. The new aristeromycin analogs (10a-b) with scaffold combination of entecavir and aristeromycin were then synthesized using the Mitsunobu reaction followed by deprotection.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2018.1554221DOI Listing

Publication Analysis

Top Keywords

rhodium catalyzed
8
reductive carbocyclization
8
carbocyclization 16-enynes
8
hbv replication
8
catalyzed stereospecific
4
stereospecific reductive
4
16-enynes synthesis
4
synthesis 4'-methyl-6'-substituted
4
4'-methyl-6'-substituted aristeromycins
4
aristeromycins long-term
4

Similar Publications

A Formal 1,2-Stevens Rearrangement of Thioester Ylides as a Single-Atom Molecular Editing Tool.

Org Lett

December 2024

University of Belgrade, Faculty of Chemistry, Studentski trg 16, P.O. Box 51, 11158 Belgrade 118, Serbia.

A rhodium-catalyzed reaction of thioesters with diazo reagents was recognized as a powerful and unprecedented tool for single-atom molecular editing by the insertion of a single carbon atom into the C(O)─S thioester bond, thereby leading to various α-thioketones possessing a quaternary carbon atom. A selective and precise defunctionalization of the polyfunctionalized products further demonstrated the synthetic utility of the reaction for the synthesis of more common structural classes of compounds.

View Article and Find Full Text PDF

In light of the extensive applications of sulfur-containing heterocyclic compounds in drug discovery, agrochemicals, and advanced materials, the construction of complex sulfur-containing molecular scaffolds has flourished in recent years. There is a profound interest in synthetic methods for forming carbon-sulfur bonds. Regarding this, transition metal (TM)-catalyzed C-H bond activation has emerged as a valuable means for the rapid formation of C-S bonds, although it is comparatively less explored than C-N or C-C bonds.

View Article and Find Full Text PDF

An efficient method for construction of various fluorenones has been achieved via Rh(III)-catalyzed C-H activation/[4 + 2] annulation/aromatization sequences of simple and readily available enaminones and 1,3-dienes. This protocol showed good substrate compatibility as an array of structurally and electronically diverse fluorenones prepared efficiently in moderate to good yields and preparative scale utility showing very good efficiency in the late-stage functionalization of complex valuable molecules.

View Article and Find Full Text PDF

Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence.

View Article and Find Full Text PDF

Two routes to assemble the complete tricyclic core of alopecurone C are described. In the first-generation route, an efficient synthesis of the "eastern" half of the target, including a decagram-scale rhodium-catalyzed C-H insertion reaction, was developed. When this route proved intractable for assembling the final flavanone ring, a successful second-generation route was developed from a flavanone precursor (naringenin) employing a later stage C-H insertion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!