Leishmaniasis is a worldwide public health problem caused by protozoan parasites of the genus Leishmania. Leishmania braziliensis is the most important species responsible for tegumentary leishmaniases in Brazil. An understanding of the molecular mechanisms underlying the success of this parasite is urgently needed. An in-depth study on the modulation of gene expression across the life cycle stages of L. braziliensis covering coding and noncoding RNAs (ncRNAs) was missing and is presented herein. Analyses of differentially expressed (DE) genes revealed that most prominent differences were observed between the transcriptomes of insect and mammalian proliferative forms (6,576 genes). Gene ontology (GO) analysis indicated stage-specific enriched biological processes. A computational pipeline and 5 ncRNA predictors allowed the identification of 11,372 putative ncRNAs. Most of the DE ncRNAs were found between the transcriptomes of insect and mammalian proliferative stages (38%). Of the DE ncRNAs, 295 were DE in all three stages and displayed a wide range of lengths, chromosomal distributions and locations; many of them had a distinct expression profile compared to that of their protein-coding neighbors. Thirty-five putative ncRNAs were submitted to northern blotting analysis, and one or more hybridization-positive signals were observed in 22 of these ncRNAs. This work presents an overview of the L. braziliensis transcriptome and its adjustments throughout development. In addition to determining the general features of the transcriptome at each life stage and the profile of protein-coding transcripts, we identified and characterized a variety of noncoding transcripts. The novel putative ncRNAs uncovered in L. braziliensis might be regulatory elements to be further investigated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546399 | PMC |
http://dx.doi.org/10.1080/15476286.2019.1574161 | DOI Listing |
Life Sci Alliance
March 2025
https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene , a key transcriptional regulator of the antiviral response.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Grupo de Investigación en Simulación, Diseño, Control y Optimización de Procesos (SIDCOP), Departamento de Ingeniería Química, Universidad de Antioquia, Medellín 050010, Colombia.
Small non-coding RNAs play a pivotal role in regulating various metabolic processes in both prokaryotic and eukaryotic organisms. However, knowledge about small RNAs (sRNAs) in () is scarce. This study aimed to use cutting-edge bioinformatics tools and a compendium of RNA-seq data to predict the potential coding of sRNAs that might be present in the genome of ATCC 27064.
View Article and Find Full Text PDFScience
January 2025
Department of Evolution and Ecology, University of California, Davis, CA, USA.
Sci Adv
January 2025
Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea.
Plant Cell Rep
December 2024
Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
MiPEPs regulate growth, development and stress response. Identification of rice miPEPs plays a crucial role in elucidation of molecular functions of rice miPEPs and rice genetic improvement. MicroRNAs (miRNAs) are derivatives of primary miRNAs (pri-miRNAs) and govern the expression of target genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!