AI Article Synopsis

  • Disruption of the salience network (SN), linked to specific symptoms in schizophrenia, shows unclear functional connectivity patterns in first-episode schizophrenia (FES) patients.
  • A study involving 65 FES patients and 66 healthy controls used resting-state fMRI to analyze the functional connectivity of SN across different brain regions.
  • Results indicated hyper-connectivity between SN and the prefrontal cortex and cerebellum, alongside reduced connectivity in the cortico-striatal-thalamic-cortical sub-circuit, marking a significant dysregulation of SN in FES.

Article Abstract

The disruption of salience network (SN) has been consistently found in patients with schizophrenia and thought to give rise to specific symptoms. However, the functional dysconnectivity pattern of SN remains unclear in first-episode schizophrenia (FES). Sixty-five patients with FES and sixty-six health controls (HC) were enrolled in this study and underwent resting-state functional magnetic resonance imaging (rs-fMRI). The eleven regions of interest (ROIs) within SN were derived from the peaks of the group independent component analysis (gICA). Seed-based whole-brain functional connectivity (FC) analyses were performed with all SN ROIs as the seeds. Both hyper- and hypo-connectivity of SN were found in the FES. Specifically, the increased FC mainly existed between the SN and cortico-cerebellar sub-circuit and prefrontal cortex, while the reduced FC mainly existed within cortico-striatal-thalamic-cortical (CSTC) sub-circuit. Our findings suggest that FES is associated with pronounced dysregulation of SN, characterized prominently by hyperconnectivity of SN-prefrontal cortex and cerebellum, as well as hypoconnectivity of CSTC sub-circuit of the SN.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-019-00040-8DOI Listing

Publication Analysis

Top Keywords

resting-state functional
8
functional connectivity
8
salience network
8
first-episode schizophrenia
8
cstc sub-circuit
8
aberrant resting-state
4
functional
4
connectivity salience
4
network first-episode
4
schizophrenia disruption
4

Similar Publications

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

Background: Cognitive networks impairments are common in neuropsychiatric disorders like Attention Deficit Hyperactivity Disorder (ADHD), bipolar disorder (BD), and schizophrenia (SZ). While previous research has focused on specific brain regions, the role of the procedural memory as a type of long-term memory to examine cognitive networks impairments in these disorders remains unclear. This study investigates alterations in resting-state functional connectivity (rs-FC) within the procedural memory network to explore brain function associated with cognitive networks in patients with these disorders.

View Article and Find Full Text PDF

Local effective connectivity changes after transcranial direct current stimulation in obsessive-compulsive disorder patients.

J Affect Disord

January 2025

School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.

Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).

Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).

View Article and Find Full Text PDF

Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice.

Neuroimage

January 2025

Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan. Electronic address:

Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!