A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly flexible memristive devices based on MoS quantum dots sandwiched between PMSSQ layers. | LitMetric

Highly flexible memristive devices based on MoS quantum dots sandwiched between PMSSQ layers.

Dalton Trans

Institute of Optoelectronic Technology, Fuzhou University, Fuzhou 350002, People's Republic of China.

Published: February 2019

This paper reports a facile, cost effective method that uses an aqueous hydrothermal process for synthesizing two-dimensional molybdenum disulphide (MoS2) monolayer quantum dots (QDs) and their potential applications in flexible memristive devices. High-resolution transmission electron microscopy and atomic force microscopy images confirmed that the diameters of the synthesized MoS2 QDs with irregular shapes were in the range between 3 and 6 nm; their thicknesses were confirmed to lie between 1.0 and 0.8 nm, a clear indication that a monolayer of MoS2 QDs had been synthesized. Photoluminescence (PL) and time-resolved PL spectra of the MoS2 QDs revealed a strong emission in the blue region with a slower decay constant. Memristive devices fabricated by incorporating MoS2 QDs between poly(methylsilsesquioxane) ultrathin layers, which had been deposited on poly(ethylene terephthalate), demonstrated a high ON-OFF current ratio of ∼104, stable retention, and excellent endurance in the relaxed state; these devices were also demonstrated to function properly during bending and in a bent state. The flexible memristive devices demonstrated an OFF state with a very low current of 10-6 A. These results clearly show that ultrathin two-dimensional QDs have promising applications in high-performance flexible memristive devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt04593cDOI Listing

Publication Analysis

Top Keywords

memristive devices
20
flexible memristive
16
mos2 qds
16
quantum dots
8
devices demonstrated
8
devices
6
qds
6
memristive
5
mos2
5
highly flexible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!