A modulated coherent (La,Sr)CoO3-δ/(Ce,Gd)O2-δ heterostructure is characterized for the first time for its electronic and chemical properties. 2D-multilayer architectures are deposited on NdGaO3 (110) single crystal substrate by pulsed laser deposition, resulting in epitaxial structures with in-plane lattice rotation that, via the metal oxides' interfaces, induces mutual structural rearrangements. Our results show that (La,Sr)CoO3-d thin films of 10-100 nm are chemically unstable when exposed to air at 600 °C during electrical cyclic stress-tests. Conversely, improved stability is achieved confining LSC in the nanometric heterostructure. Remarkably, the chemical stabilization occurs without compromising substantially the electrical properties of the LSC component: the heterostructures show unexpected electrical behaviour with dominant electronic contributions, fast conductivity and mixed ionic-electronic properties, depending on the number of interfaces and the nano-scaled layers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr08528eDOI Listing

Publication Analysis

Top Keywords

electrochemical stability
4
stability lasrcoo
4
lasrcoo lasrcoo/ce
4
lasrcoo/ce gdo
4
gdo heterostructures
4
heterostructures modulated
4
modulated coherent
4
coherent lasrcoo3-δ/cegdo2-δ
4
lasrcoo3-δ/cegdo2-δ heterostructure
4
heterostructure characterized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!