We investigate the microstructure and rheology of a hard-sphere suspension in a Newtonian fluid confined in a cylindrical channel and undergoing pressure-driven flow using Monte Carlo simulations. We develop a hydrodynamic framework inspired by dynamical density functional theory approaches in which the contributions due to various flow-induced hydrodynamic interactions (HI) are included in the form of thermodynamic work done by these HI-derived forces in displacing the hard spheres. Using this framework, we can self-consistently determine the effect of the local microstructure on the average flow field, and vice versa, and coevolve the inhomogeneous density distribution and the flattening velocity profile with increase in the density of suspended particles. Specifically, we explore the effect on the local microstructure due to the inclusion of forces arising from confinement-induced inertial effects, forces due to solvent-mediated interparticle interactions, and the dependence of the diffusivity on the local density. We examine the dependence of the apparent viscosity of the suspension on the volume fraction of hard spheres in the cylinder, the flow rate, and the diameter of the cylinder and investigate their effects on the local microstructure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345264 | PMC |
http://dx.doi.org/10.1103/PhysRevE.98.042602 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFEur Phys J E Soft Matter
January 2025
Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France.
We study experimentally at the macroscopic and microstructure scale a dense suspension of non-Brownian neutrally buoyant spherical particles experiencing periodic reversals of flow at constant rate between parallel plates and tracked individually. We first characterize the quasi-steady state reached at the end of half periods. The volume fraction of particles increases from the walls to the center as a result of migration induced by the nonuniform strain rate.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFHeliyon
January 2025
Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.
Although the accumulation of random genetic mutations has been traditionally viewed as the main cause of cancer progression, altered mechanobiological profiles of the cells and microenvironment also play a major role as a mutation-independent element. To probe the latter, we have previously reported a microfluidic cell-culture platform with an integrated flexible actuator and its application for sequential cyclic compression of cancer cells. The platform is composed of a control microchannel in a top layer for introducing external pressure, and a polydimethylsiloxane (PDMS) membrane from which a monolithically-integrated actuator protrudes downwards into a cell-culture microchannel.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Transportation Engineering, Southwest Forestry University, Kunming, 650224, China.
The current piston material, Al-12Si, lacks sufficient passivation in the acidic lubrication system of biodiesel engines, making it prone to corrosion in the presence of Cl. Fe amorphous particles exhibit good compatibility with Al-12Si, possessing strong corrosion resistance, excellent passivation ability, and good high-temperature stability. They are a potential reinforcement for enhancing the Al-12Si piston material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!