The IRE1α/XBP1s signaling pathway is an arm of the unfolded protein response (UPR) that safeguards the fidelity of the cellular proteome during endoplasmic reticulum (ER) stress, and that has also emerged as a key regulator of dendritic cell (DC) homeostasis. However, in the context of DC activation, the regulation of the IRE1α/XBP1s axis is not fully understood. In this work, we report that cell lysates generated from melanoma cell lines markedly induce XBP1s and certain members of the UPR such as the chaperone BiP in bone marrow derived DCs (BMDCs). Activation of IRE1α endonuclease upon innate recognition of melanoma cell lysates was required for amplification of proinflammatory cytokine production and was necessary for efficient cross-presentation of melanoma-associated antigens without modulating the MHC-II antigen presentation machinery. Altogether, this work provides evidence indicating that activation of the IRE1α/XBP1 pathway in BMDCs enhances CD8 T cell specific responses against tumor antigens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338037 | PMC |
http://dx.doi.org/10.3389/fimmu.2018.03050 | DOI Listing |
Neurol Int
December 2024
Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece.
Background: The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention.
View Article and Find Full Text PDFSemin Immunol
December 2024
Institute for Glyco-core Research, Nagoya University, Tokai Higher Education and Research System, Nagoya, Japan. Electronic address:
In this review, we aim to explore the multifaceted roles of galectins in host defense from a broader perspective, particularly regarding their functions when host integrity is compromised. Numerous comprehensive reviews on galectin functions in immunity have already been published. For researchers new to the field, this wealth of information may create an impression of galectins as proteins involved in a wide array of biological processes.
View Article and Find Full Text PDFVet Pathol
December 2024
Universidad de León, León, Spain.
The factors that determine the appearance of the different pathologic forms associated with bovine paratuberculosis are not fully understood, but new research suggests a critical role of innate immunity. Toll-like receptors (TLRs) trigger the recognition of invading pathogens by innate immune cells and the onset of specific immune responses. The aim of this work was to assess, immunohistochemically, the expression of TLR1, TLR2, TLR4, and TLR9 in intestinal samples of 20 cows showing different types of paratuberculous lesions: uninfected controls, focal lesions, paucibacillary, and multibacillary diffuse forms.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.
View Article and Find Full Text PDFStructure
December 2024
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:
The solute carrier family 15 members 3 and 4 (SLC15A3 and SLC15A4) are closely related endolysosomal peptide transporters that transport free histidine and certain dipeptides from the lumen to cytosol. Besides, SLC15A4 also functions as a scaffold protein for the recruitment of the adapter TASL for interferon regulatory factor 5 (IRF5) activation downstream of innate immune TLR7-9 signaling. However, the molecular basis for the substrate recognition and TASL recruitment by these membrane proteins is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!