, known to accumulate lipids intracellularly, lacks the cellulolytic enzymes needed to break down solid biomass directly. This study aimed to evaluate the potential metabolic burden of expressing core cellulolytic enzymes in an engineered high lipid-accumulating strain of . Three fungal cellulases, - chimeric cellobiohydrolase I (chimeric-CBH I), cellobiohydrolase II (CBH II), and endoglucanase II (EG II) were expressed using three constitutive strong promoters as a single integrative expression block in a recently engineered lipid hyper-accumulating strain of (HA1). In yeast extract-peptone-dextrose (YPD) medium, the resulting cellulase co-expressing transformant YL165-1 had the chimeric-CBH I, CBH II, and EG II secretion titers being 26, 17, and 132 mg L, respectively. Cellulase co-expression in YL165-1 in culture media with a moderate C/N ratio of ∼4.5 unexpectedly resulted in a nearly two-fold reduction in cellular lipid accumulation compared to the parental control strain, a sign of cellular metabolic drain. Such metabolic drain was ameliorated when grown in media with a high C/N ratio of 59 having a higher glucose utilization rate that led to approximately twofold more cell mass and threefold more lipid production per liter culture compared to parental control strain, suggesting cross-talk between cellulase and lipid production, both of which involve the endoplasmic reticulum (ER). Most importantly, we found that the chemical chaperone, trimethylamine N-oxide dihydride increased glucose utilization, cell mass and total lipid titer in the transformants, suggesting further amelioration of the metabolic drain. This is the first study examining lipid production in cellulase-expressing strains under various C/N ratio media and with a chemical chaperone highlighting the metabolic complexity for developing robust, cellulolytic and lipogenic yeast strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333634PMC
http://dx.doi.org/10.3389/fmicb.2018.03276DOI Listing

Publication Analysis

Top Keywords

c/n ratio
16
chemical chaperone
12
metabolic drain
12
lipid production
12
metabolic burden
8
fungal cellulases
8
high lipid-accumulating
8
lipid-accumulating strain
8
cellulolytic enzymes
8
compared parental
8

Similar Publications

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Competition is ubiquitous and an important driver of tree mortality. Non-structural carbohydrates (NSCs, including soluble sugars and starch) and C-N-P stoichiometries are affected by the competitive status of trees and, in turn, physiologically determine tree growth and survival in competition. However, the physiological mechanisms behind tree mortality caused by intraspecific competition remain unclear.

View Article and Find Full Text PDF

Geopolymer, as a promising inorganic binding material, holds potential for use in constructing base layers for highway pavements. This study aims to evaluate the mechanical properties of geopolymer-stabilized macadam (GSM) at both the micro- and macro-scale by a series of tests, demonstrating that high-Ca GSM is a high-quality material for pavement base layers. The results demonstrated that GSM exhibits outstanding mechanical and fatigue properties, significantly surpassing those of cement-stabilized macadam (CSM).

View Article and Find Full Text PDF

Aquaculture, a vital industry supplying a significant portion of the world's seafood, faces challenges such as the deterioration of the aquaculture environment. The objective of this study was to isolate and identify microorganisms with the capacity to eliminate nitrite in water from shrimp ponds and evaluate their potential as probiotics to improve water quality. Additionally, the study also determines the ideal conditions for the probiotic to effectively reduce nitrite-N and ammonia-N.

View Article and Find Full Text PDF

Cereal-legume intercropping stimulates straw decomposition and promotes soil organic carbon stability.

Sci China Life Sci

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.

Increasing carbon (C) sequestration and stability in agricultural soils is a key strategy to mitigate climate change towards C neutrality. Crop diversification is an initiative to increase C sequestration in fields, but it is unclear how legume-based crop diversification impacts the functional components of soil organic carbon (SOC) in dryland, including the formation and transformation of particulate organic carbon (POC) and mineral-associated organic carbon (MAOC). We investigated the decomposition of straw residues, the fate of photosynthesized C, as well as the formation of MAOC and POC fractions using an in situC labeling technique in the soybean-wheat intercropping, soybean-maize intercropping and their respective monocropping systems, with and without cover crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!