Alzheimer's disease (AD) is a neurodegenerative disorder with a clinical presentation characterized by memory impairment and executive dysfunction. Our group previously demonstrated significant alterations in white matter microstructural metrics in AD compared to healthy older adults. We aimed to further investigate the relationship between white matter microstructure in AD and cognitive function, including memory and executive function. Diffusion tensor imaging (DTI) and neuropsychological data were downloaded from the AD Neuroimaging Initiative database for 49 individuals with AD and 48 matched healthy older adults. The relationship between whole-brain fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity (RD), and composite scores of memory and executive function was examined. We also considered voxel-wise relationships using Tract-Based Spatial Statistics. As expected, individuals with AD had lower composite scores on tests of memory and executive function, as well as disrupted white matter integrity (low FA, high MD, AxD, and RD) relative to healthy older adults in widespread regions, including the hippocampus. When the AD and healthy older adult groups were combined, we found significant relationships between DTI metrics (FA/MD/AxD/RD) and memory scores across widespread regions of the brain, including the medial temporal regions. We also found significant relationships between DTI metrics (FA/MD/AxD/RD) and executive function in widespread regions, including the frontal areas in the combined group. However, when the groups were examined separately, no significant relationships were found between DTI metrics (FA/MD/AxD/RD) and memory performance for either group. Further, we did not find any significant relationships between DTI metrics (FA/MD/AxD/RD) and executive function in the AD group, but we did observe significant relationships between FA/RD, and executive function in healthy older adults. White matter integrity is disrupted in AD. In a mixed sample of AD and healthy elderly persons, associations between measures of white matter microstructure and memory and executive cognitive test performance were evident. However, no significant linear relationship between the degree of white matter disruption and level of cognitive functioning (memory and executive abilities) was found in those with AD. Future longitudinal studies of the relations between DTI metrics and cognitive function in AD are required to determine whether DTI has potential to measure progression of AD and/or treatment efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333848 | PMC |
http://dx.doi.org/10.3389/fnagi.2018.00436 | DOI Listing |
Comput Med Imaging Graph
January 2025
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, CHU Clermont-Ferrand, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson's disease.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Neurosurgery, China-Japan Union Hospital of Jilin University and The Third Bethune Hospital of Jilin University, Changchun, China.
Objectives: To investigate the effect of diffusivity metrics of magnetic resonance diffusion tensor imaging (MR-DTI) in the assessment of treatment effects.
Methods: MR-DTI examination for trigeminal neuralgia (TN) patients and the diffusivity metrics of the trigeminal ganglion (TG) were analyzed. Before and after the percutaneous stereotactic radiofrequency rhizotomy (PSR) operation, the treatment effect was assessed using pain scores and MR-DTI.
J Inherit Metab Dis
January 2025
Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA.
Mucopolysaccharidosis type I (MPS I) is an inherited lysosomal storage disorder leading to deleterious brain effects. While animal models suggested that MPS I severely affects white matter (WM), whole-brain diffusion tensor imaging (DTI) analysis was not performed due to MPS-related morphological abnormalities. 3T DTI data from 28 severe (MPS IH, treated with hematopoietic stem cell transplantation-HSCT), 16 attenuated MPS I patients (MPS IA) enrolled under the study protocol NCT01870375, and 27 healthy controls (HC) were analyzed using the free-water correction (FWC) method to resolve macrostructural partial volume effects and unravel differences in DTI metrics accounting for microstructural abnormalities.
View Article and Find Full Text PDFFront Neurosci
December 2024
Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada.
Sci Rep
January 2025
Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
This study aimed to investigate the diagnostic and evaluative significance of combining median nerve (MN) morphological measurements with diffusion tensor imaging (DTI) and T2 mapping metrics for carpal tunnel syndrome (CTS). Morphological and multiparametric magnetic resonance neurography (MRN), along with clinical evaluation, were conducted on 33 CTS patients and 32 healthy controls. The MRN metrics included fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), radial diffusivity (RD), T2 value, cross-sectional area (CSA) and MN flattening ratio (MNFR) at both the pisiform bone and hamate bone levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!