In this paper, authors present a novel architecture for controlling an industrial robot via Brain Computer Interface. The robot used is a Series 2000 KR 210-2. The robotic arm was fitted with DI drawing devices that clamp, hold and manipulate various artistic media like brushes, pencils, pens. User selected a high-level task, for instance a shape or movement, using a human machine interface and the translation in robot movement was entirely demanded to the Robot Control Architecture defining a plan to accomplish user's task. The architecture was composed by a Human Machine Interface based on P300 Brain Computer Interface and a robotic architecture composed by a deliberative layer and a reactive layer to translate user's high-level command in a stream of movement for robots joints. To create a real-case scenario, the architecture was presented at Ars Electronica Festival, where the A3-K3 architecture has been used for painting. Visitors completed a survey to address 4 self-assessed different dimensions related to human-robot interaction: the technology knowledge, the personal attitude, the innovativeness and the satisfaction. The obtained results have led to further exploring the border of human-robot interaction, highlighting the possibilities of human expression in the interaction process with a machine to create art.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336031 | PMC |
http://dx.doi.org/10.3389/fnbot.2018.00081 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Power, Adama Science and Technology University, Adama, 1888, Ethiopia.
Although the Transformer architecture has established itself as the industry standard for jobs involving natural language processing, it still has few uses in computer vision. In vision, attention is used in conjunction with convolutional networks or to replace individual convolutional network elements while preserving the overall network design. Differences between the two domains, such as significant variations in the scale of visual things and the higher granularity of pixels in images compared to words in the text, make it difficult to transfer Transformer from language to vision.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Minas Gerais (FAMINAS), Muriaé 36888-233, Brazil.
This paper focuses on the modeling, control, and simulation of an over-actuated hexacopter tilt-rotor (HTR). This configuration implies that two of the six actuators are independently tilted using servomotors, which provide high maneuverability and reliability. This approach is predicted to maintain zero pitch throughout the trajectory and is expected to improve the aircraft's steering accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
This paper presents a comprehensive approach to evaluating the ability of multi-legged robots to traverse confined and geometrically complex unstructured environments. The proposed approach utilizes advanced point cloud processing techniques integrating voxel-filtered cloud, boundary and mesh generation, and dynamic traversability analysis to enhance the robot's terrain perception and navigation. The proposed framework was validated through rigorous simulation and experimental testing with humanoid robots, showcasing the potential of the proposed approach for use in applications/environments characterized by complex environmental features (navigation inside collapsed buildings).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!