A new modification of Mn(OH)Cl was obtained under high-pressure/high-temperature conditions in a Walker-type multianvil device. The pale pink, hygroscopic compound crystallizes in the orthorhombic space group (no. 62) with = 602.90(4), = 350.98(2), = 1077.69(7) pm, and = 228 × 10 pm. The layered centrosymmetric structure consists of edge-sharing Mn(OH)Cl octahedra arranged in sheets parallel to the (001) plane. The comparatively long HCl distance of 275 pm suggests only weak hydrogen bonds between neighboring layers. Spin-polarized scalar-relativistic DFT+ calculations predict a non-conducting magnetically ordered ground state with a band gap of at least 3.2 eV and an effective magnetic moment of 4.65 µ/f. u. The experimentally determined magnetic response of Mn(OH)Cl is paramagnetic in the range of 10-300 K. The estimated moment of 5.6 µ/f. u. indicates the high-spin configuration of manganese(II). We find hints for a long-range magnetic ordering below 10 K.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334172PMC
http://dx.doi.org/10.1002/ejic.201800928DOI Listing

Publication Analysis

Top Keywords

synthesis characterization
4
characterization manganese
4
manganese hydroxide
4
hydroxide chloride
4
chloride γ-mnohcl
4
γ-mnohcl modification
4
modification mnohcl
4
mnohcl high-pressure/high-temperature
4
high-pressure/high-temperature conditions
4
conditions walker-type
4

Similar Publications

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Synthesis of zeolite from rice husk ash and kaolinite clay for the removal of methylene blue from aqueous solution.

Heliyon

January 2025

Department of Chemistry, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.

Zeolite was successfully synthesized using a mixture of kaolinite clay (which served as the alumina source) and rice husk ash (silica source). The aim of this work was to synthesize highly efficient zelolite to remove methyle blue dye from aqueous solution. The synthesized adsorbent was characterised using Fourier Transform Infrared (FTIR) spectroscopy, powder x-ray diffraction (PXRD) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and pH at the point of zero charge (pHpzc).

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!