[The effect of cgVEGF164 on the growth of murine hair follicles].

Yi Chuan

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China.

Published: January 2019

Vascular endothelial growth factor (VEGF) is a dimeric glycoprotein that induces proliferation and migration of vascular endothelial cells as well as regulation of capillary formation around hair follicles which affects the growth and development of hair follicles. cgVEGF164 is a major splice variant of the cashmere goat VEGF-A gene, but its regulation on hair follicles is rarely known. In order to investigate the role of cgVEGF164 on the growth of murine hair follicles, we produced keratin 14 promoter-driven cgVEGF164 transgenic mice via pronuclear microinjection. Firstly, the diameter and density of hair follicles of transgenic mice were compared with non-transgenic control mice in paraffin sections stained by hematoxylin-eosin (H&E). Then, protein expression levels and the phosphorylation of ERK1/2, AKT1 and LEF1 were examined by Western blot. There are five positive individuals among the neonatal mice (positive rate is 8.5%). Compared with non-transgenic control mice, the diameter and density of hair follicles in transgenic mice are both obviously increased. The expression levels of P-ERK1/2/ERK1/2, P-AKT1/AKT1 and P-LEF1/LEF1 are significantly higher in transgenic mice than those in non-transgenic control mice. Based on these results, we conclude that cgVEGF164 as a growth factor can improve the growth of hair follicles which might be mediated by increasing the levels of ERK1/2, AKT1, and LEF1 protein phosphorylation.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.18-136DOI Listing

Publication Analysis

Top Keywords

hair follicles
28
transgenic mice
16
cgvegf164 growth
12
non-transgenic control
12
control mice
12
growth murine
8
hair
8
murine hair
8
vascular endothelial
8
growth factor
8

Similar Publications

Alopecia areata (AA) is a chronic, autoimmune skin disease characterized by non-scarring hair loss. Baricitinib, a Janus kinase inhibitor (JAKi), prevents hair loss and promotes hair regrowth by inhibiting the inflammatory Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway involved in cytotoxic T cell responses targeting hair follicles. The introduction of JAKi has transformed treatment against severe AA.

View Article and Find Full Text PDF

Public health alarm concerning the emerging fungus is fueled by its antifungal drug resistance and propensity to cause deadly outbreaks. Persistent skin colonization drives transmission and lethal sepsis although its basis remains mysterious. We compared the skin colonization dynamics of with its relative , quantifying skin fungal persistence and distribution and immune composition and positioning.

View Article and Find Full Text PDF

Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!