Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5 Stem Cells via Inhibition of Wnt and Notch Signaling.

Cell Mol Gastroenterol Hepatol

Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genome Resource Center, Soochow University, and Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou, China; Department of Pathology, University of Chicago, Chicago, Illinois. Electronic address:

Published: May 2019

Background & Aims: Epithelial regeneration is essential for homeostasis and repair of the mucosal barrier. In the context of infectious and immune-mediated intestinal disease, interleukin (IL) 22 is thought to augment these processes. We sought to define the mechanisms by which IL22 promotes mucosal healing.

Methods: Intestinal stem cell cultures and mice were treated with recombinant IL22. Cell proliferation, death, and differentiation were assessed in vitro and in vivo by morphometric analysis, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry.

Results: IL22 increased the size and number of proliferating cells within enteroids but decreased the total number of enteroids. Enteroid size increases required IL22-dependent up-regulation of the tight junction cation and water channel claudin-2, indicating that enteroid enlargement reflected paracellular flux-induced swelling. However, claudin-2 did not contribute to IL22-dependent enteroid loss, depletion of Lgr5 stem cells, or increased epithelial proliferation. IL22 induced stem cell apoptosis but, conversely, enhanced proliferation within and expanded numbers of transit-amplifying cells. These changes were associated with reduced wnt and notch signaling, both in vitro and in vivo, as well as skewing of epithelial differentiation, with increases in Paneth cells and reduced numbers of enteroendocrine cells.

Conclusions: IL22 promotes transit-amplifying cell proliferation but reduces Lgr5 stem cell survival by inhibiting notch and wnt signaling. IL22 can therefore promote or inhibit mucosal repair, depending on whether effects on transit-amplifying or stem cells predominate. These data may explain why mucosal healing is difficult to achieve in some inflammatory bowel disease patients despite markedly elevated IL22 production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6352747PMC
http://dx.doi.org/10.1016/j.jcmgh.2018.09.006DOI Listing

Publication Analysis

Top Keywords

lgr5 stem
12
stem cells
12
stem cell
12
transit-amplifying cells
8
wnt notch
8
notch signaling
8
il22 promotes
8
cell proliferation
8
in vitro in vivo
8
cells
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!