Background: Sugarcane silage has been increasing as a feed in the tropics by dairy farmers. However, sugarcane normally had high yeast population that leads to intense alcoholic fermentation and excessive Dry-Matter (DM) loss during ensilage and after air exposure, as well. There are several patents that have recently shown the benefits of applying Lactobacillus buchneri in forage preservation.
Objective: This study aimed to investigate the changes in pH, DM, Water-Soluble Carbohydrates (WSC) and fermentation end product concentrations that occur in sugarcane silage with or without inoculation with L. buchneri after 45 days of ensiling.
Methods: Sugarcane plants were harvested with approximately 16 months of growth and chopped at 2 cm. Four strains of wild L. buchneri (56.1, 56.4, 56.9 and 56.26) and the commercial inoculant "Lalsil Cana" were evaluated. For all treatments, the theoretical application rate was 1.0 × 106 colony- forming units (cfu) per g of fresh weight. Data from the silo openings were analysed as a completely randomized design, with four replicates per treatment (inoculants).
Results: The treatment with L. buchneri affected the DM content, pH, Lactic Acid Bacteria (LAB) population, DM recovery, and concentrations of WSC, lactic acid, acetic acid and ethanol of sugarcane silage after 45 days of ensiling. Yeasts and molds populations and the concentrations of propionic and butyric acids were not affected by the treatments.
Conclusion: Lactobacillus buchneri 56.1 and 56.4 are considered the most suitable strains for improving the fermentation of sugarcane silage and thus are potential inoculants for silage production. At present, we are preparing the patent application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2212798410666190128101343 | DOI Listing |
BMC Plant Biol
January 2025
College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.
View Article and Find Full Text PDFJ Anim Physiol Anim Nutr (Berl)
November 2024
Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.
This study aimed to assess the impact of protein supplementation and its interaction with calf sex (CS) on the performance, metabolism and physiology of pregnant beef cows. Fifty-two multiparous Zebu beef cows carrying female (n = 22) and male (n = 30) fetuses were used. Cows were individually housed from day 100 to 200 of gestation and randomly assigned to restricted (RES, n = 26) or supplemented (SUP, n = 26) groups.
View Article and Find Full Text PDFBMC Microbiol
May 2024
Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
Recent Adv Food Nutr Agric
May 2024
Universidade Estadual do Oeste do Paraná - Rua Pernambuco, 1777, Centro de Ciências Agrárias, Marechal Cândido Rondon/PR. Brazil.
Background: Distillery vinasse is one of the promising bio-fertilizers, as it contains significant amounts of essential chemical elements, allied with sorghum that is widely used in the diet of ruminant animals and has been considered as an alternative to the production of other cereals or forages. This study aimed to evaluate saccharin sorghum silage from fertilization with vinasse.
Methods: The research was conducted using the BRS-511, CR-1339, and CR-1342 geno-types.
Trop Anim Health Prod
March 2024
Departamento de Zootecnia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brasil.
We investigated the effects of replacing ground corn with full-fat corn germ (FFCG) on milk production, milk composition, and nutrient use in cows fed sugarcane bagasse and cactus cladodes. Ten multiparous Girolando cows (average body weight 500 ± 66 kg, 90 ± 15 days in milk) were distributed in a replicated 5 × 5 Latin Square and assigned to five dietary treatments containing 0%, 25%, 50%, 75%, or 100% of full-fat corn germ in substitution to ground corn. Full-fat corn germ increased fat-corrected milk yield by 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!