Background And Objectives: Multiple-Drug-Resistance (MDR) among bacteria is an imminent problem and alternative therapies are seen as a future abode. Agarwood Oil (AO) is described to possess antimicrobial activity besides many other medicinal utilities. This paper discusses the antimicrobial activity of AO on MDR and non-MDR strains of microbes of 69 genera isolated from clinical and non-clinical samples.

Methods And Results: In this study sensitivity of microbes was determined for conventional antimicrobials and AO using disc diffusion assay followed by determination of minimum inhibitory concentration (MIC) using agar well dilution assay. A total of 18.5% (522) strains were found sensitive to AO. Carbapenem resistant bacterial strains were more often (p, ≤0.01) resistant to antibiotics with 4.2 times more odds (99% CI, 2.99-5.90) of being MDR than carbapenem sensitive strains but no difference in their AO sensitivity was observed. However, MDR strains were more often (p, <0.001) resistant to AO than non-MDR strains. Bacteria isolated from dogs were more often sensitive to AO than those from buffaloes, human, horse, and cattle. On the other hand, bacteria from pigs were more often (p, ≤0.05) resistant to AO than bacteria from human, cattle, buffaloes, dogs, wild carnivores and birds. Oxidase positive Gram positive bacteria had 4.29 (95% CI, 2.94-6.27) times more odds to be AO sensitive than oxidase negative Gram negative bacteria. Bacillus species strains were the most sensitive bacteria to AO followed by strains of Streptococcus and Staphylococcus. The MIC of AO for different bacteria ranged from 0.01 mg/mL to > 2.56 mg/mL.

Conclusion: The study concluded that MDR and AO resistance had a similar trend and AO may not be seen as a good antimicrobial agent against MDR strains.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570163816666190125163536DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
agarwood oil
8
mdr strains
8
mdr
7
strains
6
antimicrobial
4
activity agarwood
4
oil multiple-drug-resistant
4
multiple-drug-resistant mdr
4
mdr microbes
4

Similar Publications

Cecropin AD ameliorates pneumonia and intestinal injury in mice with mycoplasma pneumoniae by mediating gut microbiota.

BMC Vet Res

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.

View Article and Find Full Text PDF

Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.

View Article and Find Full Text PDF

Purpose: A recent update of consensus guidelines for the management of Cushing's disease (CD) included indications for medical therapy. However, there is limited evidence regarding their implementation in clinical practice. This study aimed to evaluate current medical therapy approaches by expert pituitary centers through an audit conducted to validate the criteria of Pituitary Tumors Centers of Excellence (PTCOEs) and provide an initial standard of medical care for CD.

View Article and Find Full Text PDF

The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!