Background And Objectives: Multiple-Drug-Resistance (MDR) among bacteria is an imminent problem and alternative therapies are seen as a future abode. Agarwood Oil (AO) is described to possess antimicrobial activity besides many other medicinal utilities. This paper discusses the antimicrobial activity of AO on MDR and non-MDR strains of microbes of 69 genera isolated from clinical and non-clinical samples.
Methods And Results: In this study sensitivity of microbes was determined for conventional antimicrobials and AO using disc diffusion assay followed by determination of minimum inhibitory concentration (MIC) using agar well dilution assay. A total of 18.5% (522) strains were found sensitive to AO. Carbapenem resistant bacterial strains were more often (p, ≤0.01) resistant to antibiotics with 4.2 times more odds (99% CI, 2.99-5.90) of being MDR than carbapenem sensitive strains but no difference in their AO sensitivity was observed. However, MDR strains were more often (p, <0.001) resistant to AO than non-MDR strains. Bacteria isolated from dogs were more often sensitive to AO than those from buffaloes, human, horse, and cattle. On the other hand, bacteria from pigs were more often (p, ≤0.05) resistant to AO than bacteria from human, cattle, buffaloes, dogs, wild carnivores and birds. Oxidase positive Gram positive bacteria had 4.29 (95% CI, 2.94-6.27) times more odds to be AO sensitive than oxidase negative Gram negative bacteria. Bacillus species strains were the most sensitive bacteria to AO followed by strains of Streptococcus and Staphylococcus. The MIC of AO for different bacteria ranged from 0.01 mg/mL to > 2.56 mg/mL.
Conclusion: The study concluded that MDR and AO resistance had a similar trend and AO may not be seen as a good antimicrobial agent against MDR strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1570163816666190125163536 | DOI Listing |
BMC Vet Res
January 2025
Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Center for Public Health Research, Medical School of Nanjing University, Nanjing, China.
Background: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), and can cause severe cerebral complications and even fatality in children younger than 5 years old. However, there is no specific medication for EV71 infection in clinical practice. Our previous studies had identified the 6-thioguanine (6-TG), an FDA-approved anticancer drug, as a potential antiviral agent, but its anti-EV71 activity is largely unknown, therefore, we aim to explore the antiviral effect of 6-TG on EV71.
View Article and Find Full Text PDFAMB Express
January 2025
Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, PO Box 68, Hadayek Shoubra, Cairo, 11241, Egypt.
Pituitary
January 2025
Division of Endocrinology, Santiago de Compostela University and Ciber OBN, Santiago, Spain.
Purpose: A recent update of consensus guidelines for the management of Cushing's disease (CD) included indications for medical therapy. However, there is limited evidence regarding their implementation in clinical practice. This study aimed to evaluate current medical therapy approaches by expert pituitary centers through an audit conducted to validate the criteria of Pituitary Tumors Centers of Excellence (PTCOEs) and provide an initial standard of medical care for CD.
View Article and Find Full Text PDFSci Rep
January 2025
General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!