Polyglutamine (polyQ) diseases describe a group of progressive neurodegenerative disorders caused by the CAG triplet repeat expansion in the coding region of the disease genes. To date, nine such diseases, including spinocerebellar ataxia type 3 (SCA3), have been reported. The formation of SDS-insoluble protein aggregates in neurons causes cellular dysfunctions, such as impairment of the ubiquitin-proteasome system, and contributes to polyQ pathologies. Recently, the E3 ubiquitin ligases, which govern substrate specificity of the ubiquitin-proteasome system, have been implicated in polyQ pathogenesis. The Cullin (Cul) proteins are major components of Cullin-RING ubiquitin ligases (CRLs) complexes that are evolutionarily conserved in the Drosophila genome. In this study, we examined the effect of individual Culs on SCA3 pathogenesis and found that the knockdown of Cul1 expression enhances SCA3-induced neurodegeneration and reduces the solubility of expanded SCA3-polyQ proteins. The F-box proteins are substrate receptors of Cul1-based CRL. We further performed a genetic modifier screen of the 19 Drosophila F-box genes and identified F-box involved in polyQ pathogenesis (FipoQ) as a genetic modifier of SCA3 degeneration that modulates the ubiquitination and solubility of expanded SCA3-polyQ proteins. In the human SK-N-MC cell model, we identified that F-box only protein 33 (FBXO33) exerts similar functions as FipoQ in modulating the ubiquitination and solubility of expanded SCA3-polyQ proteins. Taken together, our study demonstrates that Cul1-based CRL and its associated F-box protein, FipoQ/FBXO33, modify SCA3 protein toxicity. These findings will lead to a better understanding of the disease mechanism of SCA3 and provide insights for developing treatments against SCA3. Cover Image for this issue: doi: 10.1111/jnc.14510.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.14669DOI Listing

Publication Analysis

Top Keywords

ubiquitination solubility
12
solubility expanded
12
expanded sca3-polyq
12
sca3-polyq proteins
12
modulates ubiquitination
8
ubiquitin-proteasome system
8
ubiquitin ligases
8
polyq pathogenesis
8
cul1-based crl
8
genetic modifier
8

Similar Publications

Background: Synucleinopathies lack cures. Antibody therapies targeting α-synuclein aim to inhibit aggregation and enhance degradation, but have limited brain entry because of size (150kDa). Smaller single-domain antibodies (sdAbs, 15kDa) have substantially improved brain uptake.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Co-chaperones are key elements of cellular protein quality control. They cooperate with the major heat shock proteins Hsp70 and Hsp90 in folding proteins and preventing the toxic accumulation of misfolded proteins upon exposure to stress. Hsp90 interacts with the co-chaperone stress-inducible phosphoprotein 1 (Sti1/Stip1/Hop) and activator of Hsp90 ATPase protein 1 (Aha1) among many others.

View Article and Find Full Text PDF

The expansion of glutamine residue track (polyQ) within soluble proteins (Q proteins) is responsible for nine autosomal-dominant genetic neurodegenerative disorders. These disorders develop when polyQ expansion exceeds a specific pathogenic threshold (Q) which is unique for each disease. However, the pathogenic mechanisms associated with the variability of Q within the family of Q proteins are poorly understood.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!