As an efficient tool in the multiplexed detection of biomolecules, bead-array could achieve separation-free detection to multiple targets, making it suitable to analyze valuable and scarce samples like antigen and antibody from living organism. Herein, we propose a spectral-optical-tweezer-assisted fluorescence multiplexing system to analyze biomolecule-conjugated bead-array. Using optical tweezer, we trapped and locked beads at the focus to accept stimulation, offering a stable and optimized analysis condition. Moving the system focus and scanning the sample slide, we achieved emissions collection to QDs-encoded bead-array after the multiplexed detection. The emission spectra of fluorescence were collected and recorded by the spectrometer. By recognizing locations of decoding peaks and counting the intensities of label signals of emission spectra, we achieved qualitative and quantitative detection to targets. As proof-of-concept studies, we use this system to carry out multiplexed detection to various types of anti-IgG in the single sample and the detection limit reaches 1.52 pM with a linear range from 0.31 to 10 nM. Through further optimization of experimental conditions, we achieved specific detection to target IgG with sandwich method in human serum and the detection limit reaches as low as 0.23 pM with a linear range from 0.88 to 28 pM, validating the practical application of this method in real samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.01.004DOI Listing

Publication Analysis

Top Keywords

multiplexed detection
12
spectral-optical-tweezer-assisted fluorescence
8
fluorescence multiplexing
8
multiplexing system
8
qds-encoded bead-array
8
detection
8
emission spectra
8
detection limit
8
limit reaches
8
linear range
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!