Many evidences suggest that DNA-drug interaction in the minor groove and the intercalation of drugs into DNA may play critical roles in antiviral, antimicrobial, and antitumor activities. As a continuous effort to develop novel antiviral agents, the series of planar fluorenone (3a-7d) were synthesized and used along with nonplanar biphenyls (11a-d) for the comparative analysis of their interaction with DNA. The chemical structure of new compounds was confirmed by H NMR, C NMR and mass spectra as well as elemental analysis. DNA affinity of 3a-7d and 11a-d was evaluated by ethidium bromide displacement assay. Affinity constant (lgKa) of 3a-7d was found to be approximately two orders of magnitude higher than constants of corresponding 11a-d. The molecular docking of aminoalkoxybiphenyls (11a-d) into minor grove of five different nucleotide sequences (d(CCIICICCII), d(CGCGTTAACGCG), d(CGCGATATCGCG), d(GGCCAATTGG), d(GGATATATCC)) demonstrated their binding capacity to the specific DNA site. The linear least squares fitting technique was successfully applied to derive an equation describing the relationship between lgKa and SF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2019.01.024 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Karmanos Cancer Institute and Department of Oncology, Wayne State University School of Medicine, Detroit, MI.
Purpose: Although lung cancer is one of the most common malignancies, the underlying genetics regarding susceptibility remain poorly understood. We characterized the spectrum of pathogenic/likely pathogenic (P/LP) germline variants within DNA damage response (DDR) genes among lung cancer cases and controls in non-Hispanic Whites (NHWs) and African Americans (AAs).
Materials And Methods: Rare, germline variants in 67 DDR genes with evidence of pathogenicity were identified using the ClinVar database.
Elife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!