A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling PpIX effective light fluence at depths into the skin for PDT dose comparison. | LitMetric

Modeling PpIX effective light fluence at depths into the skin for PDT dose comparison.

Photodiagnosis Photodyn Ther

Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA; Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756, USA.

Published: March 2019

Background: Daylight-activated PDT has seen increased support in recent years as a treatment method for actinic keratosis and other non-melanoma skin cancers. The inherent variability observed in broad-spectrum light used in this methodology makes it difficult to plan and monitor light dose, or compare to lamp light doses.

Methods: The present study expands on the commonly used PpIX-weighted effective surface irradiance metric by introducing a Monte Carlo method for estimating effective fluence rates into depths of the skin. The fluence rates are compared between multiple broadband and narrowband sources that have been reported in previous studies, and an effective total fluence for various treatment times is reported. A dynamic estimate of PpIX concentration produced during pro-drug incubation and treatment is used with the fluence estimates to calculate a photodynamic dose.

Results: Even when there is up to a 5x reduction between the effective surface irradiance of the broadband light sources, the effective fluence below 250 μm depth is predicted to be relatively equivalent. An effective threshold fluence value (0. 70J/cm) is introduced based on a meta-analysis of previously published ALA-PpIX induced cell death. This was combined with a threshold PpIX concentration (50 nM) to define a threshold photodynamic dose of 0.035 u M J/cm.

Conclusions: The threshold was used to generate lookup tables to prescribe minimal treatment times to achieve depth-dependent cytotoxic effect based on incubation times and irradiance values for each light source.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pdpdt.2019.01.022DOI Listing

Publication Analysis

Top Keywords

depths skin
8
effective surface
8
surface irradiance
8
effective fluence
8
fluence rates
8
treatment times
8
ppix concentration
8
effective
7
fluence
7
light
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!