The Toxin-Antidote Model of Cytoplasmic Incompatibility: Genetics and Evolutionary Implications.

Trends Genet

CNRS, University of Lyon, Laboratoire de Biométrie et Biologie Evolutive, 16 rue Raphael Dubois, 69622 Villeurbanne, France. Electronic address:

Published: March 2019

Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519454PMC
http://dx.doi.org/10.1016/j.tig.2018.12.004DOI Listing

Publication Analysis

Top Keywords

cytoplasmic incompatibility
8
toxin-antidote model
4
model cytoplasmic
4
incompatibility genetics
4
genetics evolutionary
4
evolutionary implications
4
implications wolbachia
4
wolbachia bacteria
4
bacteria inhabit
4
inhabit cells
4

Similar Publications

The bacterium is increasingly studied for its potential use in controlling insect vectors or pests due to its ability to induce Cytoplasmic Incompatibility (CI). CI can be exploited by establishing an opportunistic infection in a targeted insect species through trans-infection and then releasing the infected males into the environment as sterilizing agents. Several host life history traits (LHT) have been reported to be negatively affected by artificial infection.

View Article and Find Full Text PDF

are endosymbiotic bacteria inducing various reproductive manipulations of which cytoplasmic incompatibility (CI) is the most common. CI leads to reduced embryo viability in crosses between males carrying and uninfected females or those carrying an incompatible symbiont strain. In the mosquito , the Pip causes highly complex crossing patterns.

View Article and Find Full Text PDF

is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa.

View Article and Find Full Text PDF
Article Synopsis
  • Wolbachia pipientis are bacteria that manipulate the reproduction of their arthropod and nematode hosts to enhance their own transmission, particularly favoring infected females.
  • Research reveals that these bacteria can improve fertility in Drosophila melanogaster females with specific mutations affecting germline stem cell differentiation.
  • Further analysis shows that W. pipientis infection alters the expression of key genetic interactors and impacts genes involved in ubiquitination and histone modification, suggesting these processes play a role in how W. pipientis influences germline stem cell functions.
View Article and Find Full Text PDF

Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!