Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity.

J Biomech

School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia; Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086, China.

Published: March 2019

Intranasal drug delivery has attracted significant attention because of the opportunity to deliver systemic drugs directly to the blood stream. However, the mucociliary clearance poses a challenge in gaining high efficacy of intranasal drug delivery because cilia continuously carry the mucus blanket towards the laryngeal region. To better understand mucus flow behaviour on the human nasal cavity wall, we present computational model development, and evaluation of mucus motion on a realistic nasal cavity model reconstructed from CT-scans. The model development involved two approaches based on the actual nasal cavity geometry namely: (i) unwrapped-surface model in 2D domain and (ii) 3D-shell model. Conservation equations of fluid motion were applied to the domains, where a mucus production source term was used to initiate the mucus motion. The analysis included mucus flow patterns, virtual saccharin tests and quantitative velocity magnitude analysis, which demonstrated that the 3D-shell model results provided better agreement with experimental data. The unwrapped-surface model also suffered from mesh-deformations during the unwrapping stage and this led to higher mucus velocity compared to experimental data. Therefore, the 3D-shell model was recommended for future mucus flow simulations. As a first step towards mucus motion modelling this study provides important information that accurately simulates a mucus velocity field on a human nasal cavity wall, for assessment of toxicology and efficacy of intranasal drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.01.015DOI Listing

Publication Analysis

Top Keywords

nasal cavity
20
intranasal drug
12
drug delivery
12
mucus flow
12
mucus motion
12
3d-shell model
12
mucus
10
model
9
mucociliary clearance
8
efficacy intranasal
8

Similar Publications

Enhanced Nasal-to-Brain Drug Delivery by Multivalent Bioadhesive Nanoparticle Clusters for Cerebral Ischemic Reperfusion Injury Protection.

Acta Biomater

January 2025

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:

Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).

View Article and Find Full Text PDF

Objective: The goal of this study was to better understand the epidemiology, clinical characteristics, and treatment outcomes of head and neck sarcomas using real-world data from Japan.

Methods: Using the Japanese Head and Neck Cancer Registry, we identified 438 patients who were pathologically diagnosed with head and neck sarcoma between 2011 and 2020. We compared epidemiological, clinical, and prognostic data for the different histological types of sarcoma.

View Article and Find Full Text PDF

Background: Transverse maxillary deficiency is a relatively common type of malocclusion, that if left untreated will probably affect the permanent dentition. Recent investigations have proposed the use of bone-supported miniscrews around the midpalatal suture to expand the palate in late adolescents. The aim of this systematic review was to assess the efficacy of the Miniscrew Assisted Rapid Palatal Expansion (MARPE) technique in young adult patients, by quantifying skeletal expansion in relation to the age of the patient, as well as the impact upon other craniofacial sutures, and to describe the possible dental side effects.

View Article and Find Full Text PDF

Fibrous Dysplasia of the Ethmoid Bone Diagnosed in a 10-Year-Old Patient.

Medicina (Kaunas)

December 2024

Department of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wrocław, Poland.

Fibrous dysplasia is an uncommon bone disorder affecting various parts of the skeleton, often affecting facial and cranial bones. In this case, a 10-year-old patient was diagnosed with fibrous dysplasia of the ethmoid sinus at an early age. The patient has experienced nasal congestion, snores, and worsening nasal patency since 2019.

View Article and Find Full Text PDF

Injectable Chitosan Hydrogel Particles as Nasal Packing Materials After Endoscopic Sinus Surgery for Treatment of Chronic Sinusitis.

Gels

January 2025

Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.

After endoscopic sinus surgery (ESS), nasal packing is often used to stop bleeding and promote wound healing. Because maintaining a moist environment is important to enhance wound healing, hydrogel-based wound dressings are effective to promote wound healing. Chitosan is used in the medical field because of its high hemostatic and wound healing properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!