The loading of La can substantially enhance the adsorption capability of drinking water treatment residue (DWTR) for better recycling. Normally, the modification was based on incubation of DWTR and La solution at a certain ratio, following by solid-liquid separation and drying processes. This study attempted to simplify La loading procedures by adopting high ratio of DWTR and La solution to eliminate the solid-liquid separation, aiming to promote the potential actual production. According to the results of the short- (2 d) and long-term (30 d) P adsorption tests, the N gas sorption and desorption analysis, the X-ray photoelectron spectroscopy analysis, and the metal fractionation, the substantial enhanced adsorption capability of the modified DWTR was maintained and the La loading mechanisms to DWTR changed little after eliminating solid-liquid separation processes during modification; typically, La loading increased the initial P adsorption rates from 1.00 (raw DWTR) to 6.08 and 6.03 mg g d for the modified DWTR with and without the separation processes. Furthermore, the DWTR before and after modification had little unfavorable effect on the survival of snail Bellamya aeruginosa, while eliminating the separation processes tended to reduce the bioavailability of Al, Fe, and La in the modified DWTR. These results demonstrated that solid-liquid separation was not the key step for DWTR modification and that the developed simple modification method was feasible for La loading to DWTR, promoting the beneficial recycling in environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2019.01.099 | DOI Listing |
Environ Sci Ecotechnol
January 2025
CRETUS, Department of Chemical Engineering. Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489 Berlin, Germany.
MXenes are two-dimensional (2D) materials with versatile applications in optoelectronics, batteries, and catalysis. To unlock their full potential, it is crucial to characterize MXene interfaces and intercalated species in more detail than is currently possible with conventional optical spectroscopies. Here, we combine ultra-broadband ellipsometry and transmission spectroscopy from the mid-infrared (IR) to the deep-ultraviolet (UV) to probe quantitatively the composition, structure, transport, and optical properties of spray-coated TiCT MXene thin films with varying material properties.
View Article and Find Full Text PDFMicroorganisms
December 2024
Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain.
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2025
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States.
ConspectusThe surface of a catalyst is crucial for understanding the mechanisms of catalytic reactions at the molecular level and developing new catalysts with higher activity, selectivity, and durability. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) is a technique studying the surface of a sample in the gas phase, mainly identifying chemical identity, analyzing oxidation state, and measuring surface composition.In the last decade, numerous photoelectron spectroscopic methods for fundamental studies of key topics in catalysis using AP-XPS have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!