The activities of microalgae support nutrient cycling that helps to sustain aquatic and terrestrial ecosystems. Most microalgal species, especially those from the subtropics, are genomically uncharacterized. Here we report the isolation and genomic characterization of 22 microalgal species from subtropical coastal regions belonging to multiple clades and three from temperate areas. Halotolerant strains including Halamphora, Dunaliella, Nannochloris, and Chloroidium comprised the majority of these isolates. The subtropical-based microalgae contained arrays of methyltransferase, pyridine nucleotide-disulfide oxidoreductase, abhydrolase, cystathionine synthase, and small-molecule transporter domains present at high relative abundance. We found that genes for sulfate transport, sulfotransferase, and glutathione S-transferase activities were especially abundant in subtropical, coastal microalgal species and halophytic species in general. Our metabolomics analyses indicate lineage- and habitat-specific sets of biomolecules implicated in niche-specific biological processes. This work effectively expands the collection of available microalgal genomes by ∼50%, and the generated resources provide perspectives for studying halophyte adaptive traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348204 | PMC |
http://dx.doi.org/10.1016/j.isci.2018.12.035 | DOI Listing |
Nat Prod Bioprospect
January 2025
Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFN Biotechnol
January 2025
Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal species and strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds.
View Article and Find Full Text PDFMicroorganisms
December 2024
Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain.
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Institute of Technology of Agricultural Products, ELGO-Dimitra, Leof. Sofokli Venizelou 1, Lykovrysi, 14123 Athens, Greece.
sp. JB17 has been identified as an interesting microalgal species that can tolerate high salinity and high bicarbonate concentrations. In this study, sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!