When assessing biomechanics in a laboratory setting, task selection is critical to the production of accurate and meaningful data. The injury biomechanics of landing is commonly investigated in a laboratory setting using a drop landing task. However, why this task is so frequently chosen is unclear. Therefore, this narrative review aimed to (1) identify the justification/s provided within the published literature as to why a drop landing task was selected to investigate the injury biomechanics of landing in sport and (2) use current research evidence, supplemented by a new set of biomechanical data, to evaluate whether the justifications are supported. To achieve this, a comprehensive literature search using Scopus, PubMed, and SPORTDiscus online databases was conducted for studies that had collected biomechanical data relating to sport injuries using a drop landing task. In addition, kinematic and kinetic data were collected from female netball players during drop landings and maximum-effort countermovement jumps from the ground to grab a suspended ball. The literature search returned a total of 149 articles that were reviewed to determine the justification for selecting a drop landing task. Of these, 54% provided no explicit justification to explain why a drop landing task was chosen, and 15% stated it was selected because it had been used in previous research. Other reasons included that the drop landing provides high experimental control (16%), is a functional sports task (11%), and is a dynamic task (6%). Evidence in the literature suggests that the biomechanical data produced with drop landings may not be as externally valid as more sport-specific tasks. Biomechanical data showed that the drop landing may not control center of mass fall height any better than maximum-effort countermovement jumps from the ground. Further, the frequently used step-off technique to initiate drop landings resulted in kinematic and kinetic asymmetries between lower limbs, which would otherwise be symmetrical when performing a countermovement jump from the ground. Researchers should consider the limitations of a drop landing task and endeavor to improve the laboratory tasks used to collect biomechanical data to examine the injury biomechanics of landing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40279-018-01045-xDOI Listing

Publication Analysis

Top Keywords

drop landing
36
landing task
28
biomechanical data
20
injury biomechanics
16
drop
12
landing
12
biomechanics landing
12
drop landings
12
task
11
selecting drop
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!